一條Pure Maths (Summation)

2009-09-24 5:04 am

圖片參考:http://i53.photobucket.com/albums/g45/angela1201/1-3.jpg

請把Proof的過程show出來
Thank you
更新1:

看不清楚圖可瀏覽圖片網址觀看。

回答 (1)

2009-09-24 3:16 pm
✔ 最佳答案
Radius of the ith block = ir(1/n) = ir/n

So, volume of th ith block = pi(ir/n)2(h/n) = pii2r2h/n3

Vn = summation (i = 1→n) pii2r2h/n3

= pir2h / n3 summation (i = 1→ n) i2

= pir2h / n3 [(n)(n + 1)(2n + 1) / 6]

= 1/6 pir2h(1 + 1/n)(2 + 1/n)



Taking limit, as n → infinity, 1/n → 0

So, lim (n → inf.) Vn = 1/6 pir2h(1 + 0)(2 + 0) = 1/3 pir2h

參考: Physics king


收錄日期: 2021-04-19 15:24:34
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090923000051KK01610

檢視 Wayback Machine 備份