x^x find minimum

2009-09-24 4:14 am
請問x^x最小值係唔係1/e?
如果係,點解

回答 (1)

2009-09-24 4:25 am
✔ 最佳答案
Let f(x) = xx

lnf(x) = xlnx

Differentiate both sides with respect to x

1/f(x) f'(x) = x(1/x) + lnx

f'(x) = xx(1 + lnx)

Set f'(x) = 0

xx(1 + lnx) = 0

1 + lnx = 0, since xx =/= 0

-lnx = 1

ln(1/x) = 1

1/x = e

x = 1/e

When x < 1/e, f'(x) < 0

When x > 1/e, f'(x) > 0

So, the f(x) attains the minimum when x = 1/e

The minimum value

= (1/e)^(1/e)

參考: Physics king


收錄日期: 2021-04-19 15:24:53
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090923000051KK01462

檢視 Wayback Machine 備份