附加數困難題目

2009-09-23 10:21 am
find an equation of the tangent line to the curve at the given point
1; y=3x^2-4;(1,-1)

differentiate the functions
2; q(x)=1/3√8x^2

find an equation of the tangent line to the curve at the indicated point
3; y=4x^2+5x+6;(1,15)

4; y=(1-x^2)/5;(4,-3)
更新1:

differentiate the functions Q2 q(x)=1/(3√8x^2) sorry.. step: 1/(8x^2)^1/3 =(8x^2)^-1/3 =(-1/3*8x^2)^-4/3 help到這我不會做了

回答 (1)

2009-09-23 3:31 pm
✔ 最佳答案
Q1.
Step 1. Find dy/dx of the function.
y = 3x^2 - 4
dy/dx = 6x = slope of tangent.
For point (1, -1), slope = 6(1) = 6.
Step 2. Use equation of straight line to find the tangent,
y - (-1) = 6( x - 1)
y + 1 = 6x - 6
y = 6x - 7 is the tangent at (1,-1) of the curve.
Same method for Q3 and Q4.
Q2.
dq/dx = 1/3sqrt 8 ( 2x) = 2x/3(2sqrt 2) = x/3sqrt2.



2009-09-23 12:07:51 補充:
Q2. if q = (8x^2)^(-1/3), by Chain Rule, dq/dx = [d(8x^2)^(-1/3)/d(8x^2)][d(8x^2)/dx] = [(-1/3)(8x^2)^(-4/3)][16x] = (-1/3)( 8)^(-4/3)(x^2)^(-4/3)(16x)
= (-1/3)(2)^(- 4)(x)^(-8/3)(16x) = (-1/3)(1/16)(x)^(-8/3)(16x) = (-1/3)(x)^(-5/3).

2009-09-23 12:11:43 補充:
Q3. dy/dx = 8x + 5. Slope at point (1,15) = 8(1) + 5 = 13. eqt of tangent is y - 15 = 13(x - 1). y - 15 = 13x - 13, that is y = 13x + 2.

2009-09-23 12:14:03 補充:
Q4. dy/dx = -2x/5. Slope at point ( 4,-3) = -2(4)/5 = -8/5. Eqt. of tangent is y + 3 = -8/5(x - 4). 5y + 15 = -8x + 32, that is 5y + 8x - 17 = 0.


收錄日期: 2021-04-25 22:37:26
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090923000051KK00141

檢視 Wayback Machine 備份