pure maths MI

2009-09-19 4:33 am
For each positive integer n ,
define Sn = 3n[(1+(sqrt2)^n) + (1 - (sqrt2)^n)]. Prove that
(a) S(n+2) = 6S(n+1) + 9Sn
(b) Sn is divisible by 3^n

really thanks if u can help me ~

更新1:

好似有d唔清楚... define 後面條式係 3^n , 至於 S 後面 (即係 n ) , 就係細細個係右下角 thanks a lot~

回答 (1)

2009-09-19 5:00 am
✔ 最佳答案
(a) Sn+2 = 3n+2[(1 + √2)n+2 + (1 - √2)n+2]
= (9)(3n)[(1 + √2)n(1 + √2)2 + (1 - √2)n(1 - √2)2]
= (9)(3n)[(1 + √2)n(1 + 2√2 + 2) + (1 - √2)n(1 - 2√2 + 2)]
= (9)(3n)[(1 + √2)n(2√2 + 2) + (1 + √2)n + (1 - √2)n(- 2√2 + 2) + (1 - √2)n]
= (9)(3n)[2(1 + √2)n(1 + √2) + 2(1 - √2)n(1 - √2) + (1 + √2)n + (1 - √2)n]
= (18)(3n)[(1 + √2)n(1 + √2) + (1 - √2)n(1 - √2)] + 9(3n)[(1 + √2)n + (1 - √2)n]
= (6)(3n+1)[(1 + √2)n(1 + √2) + (1 - √2)n(1 - √2)] + 9Sn
= 6Sn+1 + 9Sn
(b) Let P(n) be the proposition that Sn is divisible by 3n
P(1) is true since S1 = 3[(1 + √2) + (1 - √2)] = 6 is divisible by 3
P(2) is true since S2 = 3[(1 + √2)2 + (1 - √2)2] = 3(1 + 2√2 + 2 + 1 - 2√2 + 2) = 18 is divisible by 32
Let P(k) and P(k+1) be true, i.e. Sk = 3kN and Sk+1 = 3k+1M where M and N are integers
Sk+2 = 6Sk+1 + 9Sk
= 6(3k+1M) + 9(3kN)
= 2(3k+2)M + 3k+2N
= 3k+2(2M + N) so Sk+2 is divisible by 3k+2 => P(k+2) is true
So by the principle of MI, P(n) is true for all positive integer n.

2009-09-18 21:11:40 補充:
Please see below for a better view of the answer:
http://img19.imageshack.us/img19/9624/86065421.png


收錄日期: 2021-04-23 23:20:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090918000051KK01383

檢視 Wayback Machine 備份