Linear Algebra

2009-09-17 5:44 am
Let A be an m X n matrix, B be an n X m matrix.

If n < m

Show that AB is not invertible.

回答 (4)

2009-09-17 7:43 am
✔ 最佳答案
Thm: A matrix M is invertible <=> Null of M = 0 (trivial vector sapce)
So, if we can find a nonzero vector x, Mx=0, then M is not invertible.
Now, B is nxm (m>n), consider the system of linear eq. Bx=0, where x in R^m.
The linear system Bx=0 has n equations with m variables, then the dim.
of {x | Bx=0} >= m-n >0.
Thus, we can find a nonzero vector x such that Bx=0, and then ABx=0.
i.e. there exists a nonzero vector x, (AB)x=0, so, AB is not invertible.

2009-09-17 00:19:01 補充:
基本原理: Linear mapping 不可能將空間變大(增加dim.)
本題 B: R^m -> R^n 已經將空間 R^m變小了
再來A: R^n -> R^m 不可能 1對1.
OK!?

2009-09-17 00:53:12 補充:
物理系有這玩意兒嗎?
2009-09-18 5:14 am
相後, 放在yahoo拍賣,
可能會有人喜歡收藏的,
儘管一試吧!
參考: 我
2009-09-18 3:40 am
Rank(A) <= n
Rank(B) <= n

Rank(AB) <= n < m
Hence AB is not invertible
2009-09-17 3:07 pm
這是數學系的玩意


收錄日期: 2021-05-04 00:46:22
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090916000051KK01651

檢視 Wayback Machine 備份