f.4 maths about complex number

2009-09-16 7:51 am
plz help me to calculate/simplify the questions below,

1) i+i^2+i^3+...+i^15

2) (√1 + √2)(√1 - √2) + (√2 + √3)(√2 - √3) + ... +(√n + √n+1)(√n - √n+1)
更新1:

√ = root

回答 (2)

2009-09-16 7:55 am
✔ 最佳答案
1) i + i2 + i3 + ... + i15
= (i - 1 - i + 1) repeated 3 times + i - 1 - i
= 0 * 3 - 1
= -1
2) (√1 + √2)(√1 - √2) + (√2 + √3)(√2 - √3) + ... +(√n + √n+1)(√n - √n+1)
= (1 - 2) + (2 - 3) + ... + (n - n - 1) <-- n terms, each term = -1
= (-1) * n
= -n
2009-09-16 8:12 am
1)i+i^2+i^3+...+i^15 is a G.S. of 1st term is i and common ratio also is i

= i (1 - i^15) / (1 - i)

= i (1 + i) / (1 - i)

= (i - 1) / (1 - i)

= - 1


收錄日期: 2021-04-21 22:03:35
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090915000051KK02448

檢視 Wayback Machine 備份