工程數學 initial value problem

2009-09-15 7:44 pm
find the value of yo for which the solution of the initial value problem
remains finite as t 趨近於無限大


(dy/dt)-y = 1+3sint y(0)=yo


我寫到 y=-1+3e^t∫(e^(-t) sint dt +ce^t

後面解不出來了...

回答 (1)

2009-09-15 8:18 pm
✔ 最佳答案
(dy/dt) - y = 1 + 3sint

積分因式,exp[∫(-1)dt] = e-t

e-t(dy/dt - y) = e-t + 3e-tsint

d/dt (ye-t) = e-t + 3e-tsint

ye-t = -e-t + 3∫e-tsint dt

考慮∫e-tsint dt

= -∫e-t d(cost)

= -e-tcost + ∫cost d(e-t) (分部積分)

= -e-tcost - ∫e-td(sint)

= -e-tcost - e-tsint + ∫sintd(e-t)

= -e-tcost - e-tsint - ∫e-tsintdt

所以,2∫e-tsintdt = -e-tcost - e-tsint + c'

∫e-tsintdt = -e-t/2 (cost + sint) + c

所以

ye-t = -e-t + 3[-e-t/2 (cost + sint) + c]

y = -1 + 3/2 (cost + sint) + cet



2009-09-15 12:21:24 補充:
y(0) = y0
所以,c = y0 - 1/2
但要當t → 無限大,y是finite
唯有c = 0
所以,yo = 1/2

2009-09-15 12:21:36 補充:
y(0) = y0
所以,c = y0 - 1/2
但要當t → 無限大,y是finite
唯有c = 0
所以,yo = 1/2
參考: Physics king


收錄日期: 2021-04-19 15:20:15
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090915000016KK02669

檢視 Wayback Machine 備份