F.3Maths Laws of indices

2009-09-06 8:10 am
1. Simplify(6x^-3 y)^-2(4xy^-2)^3/(2x^3y^-2)^2 and express the answer in positive indices.

2.Solve the exponential equation 5^x+3 - 5^x+1 = 24/5 .

3Evaluate (28X1010^3)^2(7X10^5)^-1/(20X10^-2)^4,and express the answer in scientific notation.

4.Given that n is an integer, simplify 12X3^2n-1 - 2X9^n/9^n+1-4X3^2n

Show steps please~

回答 (1)

2009-09-06 9:04 am
✔ 最佳答案
1. Simplify (6x-3y)-2(4xy-2)3/(2x3y-2)2 and express the answer in positive indices.

(6x-3y)-2(4xy-2)3/(2x3y-2)2
= (6-2x6y-2)(43x3y-6)/(22x6y4)
= [43/(62•22)]x6+3-6y-2-6-(-4)
= (64/144)x3y-4
= 4x3/9y4


2.Solve the exponential equation 5x+3 - 5x+1 = 24/5 .

5x+3 - 5x+1 = 24/5
52•5x+1 - 5x+1 = 24/5
5x+1(52 - 1) = 24/5
5x+1(25 - 1) = 24/5
5x+1•24 = 24/5
5x+1 = 5-1
x + 1 = -1
x = -2


3Evaluate (28 x 103)2(7 x 105)-1/(20 x 10-2)4,and express the answer in scientific notation.

(28 x 103)2(7 x 105)-1/(20 x 10-2)4
= (282 x 106)(7-1 x 10-5)/(204 x 10-8)
= [282/(7 x 204)] x 106-5-(-8)
= (7 x 10-4) x 109
= 7 x 10-4+9
= 7 x 105


4.Given that n is an integer, simplify (12 x 32n-1 - 2 x 9n)/(9n+1 - 4 x 32n)

(12 x 32n-1 - 2 x 9n)/(9n+1 - 4 x 32n)
= [12 x 32n-1 - 2 x (32)n]/[(32)n+1 - 4 x 32n)
= (12 x 3-1 x 32n - 2 x 32n)/(32 x 32n - 4 x 32n)
= (4 x 32n - 2 x 32n)/(9 x 32n - 4 x 32n)
= (4 - 2)32n/(9 - 4)32n
= 2/5


收錄日期: 2021-04-13 16:50:43
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090906000051KK00024

檢視 Wayback Machine 備份