有關三角形的問題

2009-09-05 3:00 am
有一直角三角形 ABC 內有另一三角形 AXC.
如在 AXC 的三角形內任意取一點(x,y), 之後將三角形 AXC 擴展到與三角形 ABC 一樣大小.
請問用什麼方法或公式去求得剛才在三角形 AXC 上的點(x,y) 在擴展後的新座標?
更新1:

有圖. 但我唔知點貼將圖上發問區.. 可唔可以教下我. thanks.

更新2:

http://img186.imageshack.us/img186/2179/question1.jpg

回答 (3)

2009-09-05 5:40 pm
✔ 最佳答案

圖片參考:http://img510.imageshack.us/img510/5298/dddt.png

http://img510.imageshack.us/img510/5298/dddt.png
Consider a general point D = (p,q) within ABC,
AD1 = h - q; AB = h; BC = w
By similar triangles, D1D2 = w(h - q) / h ... (1)
DD2 = D1D2 - D1D
= w(h - q) / h - p
= [w(h - q) - hp] / h ... (2)
When we consider X(a,b) as D, by sub (a,b) into (p, q)
XX2 = [w(h - b) - ha] / h
X1X2 = w(h - b) / h
When X is dragged horizontally to X1, XX2 will be expanded to X1X2
The magnification factor is X1X2 / XX2
= w(h - b) / [w(h - b) - ha]
Consider the triangles AXX2 and AEE2, the expansion of EE2 to E1E2 has the same magnification factor due to similar triangles
Consider the triangles CXX2 and CFF2, the expansion of FF2 to F1F2 has the same magnification factor due to similar triangles
Now consider a point M(x,y) within the triangle, its horizontal distance from the hypotenuse is given by sub (x,y) into (2), i.e. [w(h - y) - hx] / h
and M1M2 is w(h - y) / h
After expansion, the distance from the hypotenuse will increase to
{[w(h - y) - hx] / h}{w(h - b) / [w(h - b) - ha]}
The new x-ordinate will be w(h - y) / h - {[w(h - y) - hx] / h}{w(h - b) / [w(h - b) - ha]} which is simplified to
w(hx - bx - ah + ay)/[w(h - b) - ha] ... (3)
We can verify this equation, by sub A, X and C into it, i.e.
For A, new x-ordinate = w(- ah + ah)/[w(h - b) - ha] = 0 no change
For X, new x-ordinate = w(ha - ba - ah + ab)/[w(h - b) - ha] = 0 move to side of the triangle
For C, new x-ordinate = w(hw - bw - ah)/[w(h - b) - ha] = w no change
Now by symmetry, the translation in the y-axis can easily obtained by interchanging x and y related entities in equation (3), i.e. new y-ordinate is
h(wy - ay - bw + bx)/[h(w - a) - wb] ... (4)

2009-09-05 11:06:38 補充:
Upload 到 http://img215.imageshack.us/
再提供條link
2009-09-06 5:25 am
Hi nelsonywm2000, Thanks your replay. 請給我一點點的時間去証一証.
2009-09-05 6:59 am
資料太少 , 又沒有圖 , 所以答不了


收錄日期: 2021-04-23 23:18:22
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090904000051KK01178

檢視 Wayback Machine 備份