Find the values of a and b that give a minimum value of the area , S ,for the region enclosed by the curve y=-x^2+ax+b(which passes through point (1,2) ) and the curve y= 1/2x^2.
Solution:
Pass through (1,2) => b = 3-a
上面條curve係 y = -x^2+ax+b = -x^2+ax+3-a
下面條curve係 y = x^2/2
相減, y = -3x^2/2+ax+3-a ---------(3)
因為(3)一定pass through (1,1.5), 同埋x^2個coefficient係negative constant
所以(3)個vertex要喺(1,1.5)就會minimize la
First derivative或者completing square, a = 3, b = 0
(以上solution來源自http://forum3.hkgolden.com/view.aspx?type=BW&message=1856445的AvadaKedavra)
他這個解法的explain如下:
其實都係用parabola嘅property
同一個shape嘅parabola (即係x^2嘅coefficient係constant) 如果fix喺一點A嘅話,咁當個vertex等如A嘅話,parabola同x-axis中間個area就會係最細
因為係咁嘅情況下vertex會距離x-axis最近
-------------------------------------------------------------------------------
我想問有冇人可以解釋佢的原理,又或者以數學方法證明他的理論?
更新1:
要用到partial differentiation來解題,勁~~