F.4 Quadratic equations...

2009-08-28 7:40 pm
(1)
In a rectangular coordinate plane, if the length of a line segment joining the two points (4,7) and (k, k+4) is 5, find the values of k.

(2)
If the following quadratic equation has real roots and k is a constant, find the range or values of k.
k(2x+1) = 2-k(x^2)

回答 (2)

2009-08-28 7:59 pm
✔ 最佳答案


(1)In a rectangular coordinateplane, if the length of a line segment joining the two points
(4,7) and (k, k+4) is 5, find the values of k.
Sol
25=(k-4)^2+(k+4-7)^2
25=k^2-8k+16+k^2-6k+9
2k^2-14k=0
k^2-7k=0
k(k-7)=0
k=0 or k=7

(2)If the following quadratic equation has real roots and k is a constant, find therange
of k,k(2x+1) = 2-k(x^2)
Sol
k(2x+1)=2-kx^2
kx^2+2kx+k-2=0
kx^2+2kx+(k-2)=0
D=(2k)^2-4*k*(k-2)>=0
k^2-k(k-2)>=0
k^2-k^2+2k>=0
2k>=0
k>=0


2009-08-28 8:10 pm
1. √[(k-4)^2+(k+4-7)^2] = 5
k^2-8k+16+k^2-6k+9 = 25
2k^2-14k+25=25
k^2-7k=0
k=0 or k =7

2. k(2x+1) = 2-kx^2
2kx+k = 2-kx^2
kx^2+2kx+(k-2) = 0

∵has real roots
∴ ∆≥0
(2k)^2-4(k)(k-2) ≥ 0
4k^2-4k^2+8k ≥ 0
8k ≥ 0
k≥0
參考: me


收錄日期: 2021-04-13 16:48:49
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090828000051KK00679

檢視 Wayback Machine 備份