For each of the following functions:
(a) determine the range of values of x that the function is
(i) increasing,
(ii) decreasing;
(b) find the maximum and minimum points.
1. y = x^6 – 3x^2
dy / dx = 6x^5 – 6x
= 6x(x^2 + 1)(x + 1)(x – 1)
when dy / dx = 0,
6x(x^2 + 1)(x + 1)(x – 1) = 0
x = 0, 1 or -1
X
X < -1
X = -1
-1 <x<0
X = 0
0 < x <1
X =1
X > 1
Dy / dx
-
0
+
0
-
0
+
(a) (i) increasing: [-1, 0], [1, ∞]←此方括是為圓括。
(ii) decreasing: (-∞, -1) ←此圓括是為方括。, [0, 1]
(b) maximum point: (0, 0)
minimum point: (1, -2), (-1, -2)
問題一:「6x(x^2 + 1)(x + 1)(x – 1) = 0」如何得出x = 0, 1 or -1?請列明計算步驟。
問題二:minimum point為何會有兩個,minimum不是最少的那個嗎?