✔ 最佳答案
Moment of inertia of the rod AB about a horizontal axis through A, I = 1/3 (2m)a2 + 2ma2 = 8ma2/3 (// axis theorem)
After the particle sticks on the rod (since the collision is inelastic), then the moment of inertia of the system, I' = 8ma2/3 + ma2 = 11ma2/3
We just need to consider the velocity of the particle perpendicular to the rod.
As there is no external torque in the system,
by conservation of angular momentum,
Initial angular momentum = Final angular momentum
ma(4ucos30*) = I'w
2mau sqrt3 = 11ma2/3 w
Angular velocity after collision, w = (6sqrt3)u / 11a
The linear velocity of the particle after collision, v
= aw
= (6sqrt3)u / 11
So, the impulsive action
= mv - m(4ucos30*)
= mu[(6sqrt3)/11 - 2sqrt3]
= -(16sqrt3)mu / 11
2009-08-24 09:17:10 補充:
Impulsive action 已out of syllabus
2009-08-24 09:24:08 補充:
本書的答案沒有sqrt3,應該是它錯,因為它沒有考慮分開component來計。所以是不對的。
2009-08-24 09:25:16 補充:
我忘了寫單位,因為你的題目是有給單位的。
應該是:
Angular velocity after collision, w = (6sqrt3)u / 11a rads^-1
The impulsive action
= -(16sqrt3)mu / 11 Ns
只考慮magnitude,便得到 (16sqrt3)mu / 11 Ns