✔ 最佳答案
1. y = tan(1/x)
dy/dx = -sec2(1/x) / x2
So, x2 dy/dx + (y2 + 1)
= x2[-sec2(1/x) / x2] + [tan2(1/x) + 1]
= -sec2(1/x) + sec2(1/x)
= 0
Differentiate both sides with respect to x
x2d2y/dx2 + 2xdy/dx + 2ydy/dx = 0
d2y/dx2 + 2(x + y)/x2 dy/dx = 0
2.a. y = tan(@ - x)
= [tan@ - tanx]/[1 + tan@tanx]
= (2tanx - tanx)/[1 + 2tanxtanx]
= tanx / (1 + 2tan2x)
dy/dx = (1 + 2tan2x)sec2x - tanx(4tanxsec2x) / (1 + 2tan2x)
= sec2x(1 - 2tan2x) / (1 + 2tan2x)
For dy/dx = 0
sec2x(1 - 2tan2x) = 0
sec2x =/= 0
So, 1 - 2tan2x = 0
tanx = 1/sqrt2 or -1/sqrt2 (rejected, since 0 <= x <= pi/2)
x = 0.615 (in radian)(cor. to 3 sig. fig.)