✔ 最佳答案
1. 22007除以10的餘數?
[解]
(mod 10)
2^1≡2,2^2≡4,2^3≡8,2^4≡16≡6,
2^5≡(2^4)*2≡(6)*2≡12≡2,2^6≡(2^5)*2≡(2)*2≡2^2,…
由上可看出2^n除以10的餘數,是四次一循環
而2007除以4餘3,所以2^2007≡2^3≡8
2. 若n為正整數,且n4-27n2+81為質數p ,則數對(n,p)=?
[解]
n^4 - 27n^2+81
= (n^4+81) - 27n^2
= (n^2-9)^2 - 27n^2 + 18n^2
= (n^2-9)^2 - 9n^2
= (n^2-9)^2 - (3n)^2
= [(n^2-9)-3n]*[(n^2-9)+3n]
因為是質數p,所以n^2-9-3n=1,n^2-9+3n=p
=> n^2 - 3n - 10 = 0
=> (n + 2)(n - 5)=0
=> n=-2(不合) 或 n=5
所以p = n^2 - 9 + 3n = 25 - 9 + 15 = 31
∴(n,p) = (5, 31)
3. 正整數序對(x,y)滿足xy+6x-11=x2 ,則(x,y)=?
[解]
=> xy+6x-x^2 = 11
=> x(y+6-x) = 11
=> x=1 或 x= 11
(1)x=1時:y+6-x=11 => y+6-1=11 => y=6 => (x,y)=(6,6)
(2)x=11時:y+6-x=1 => y+6-11=1 => y=6 => (x,y)=(11,6)
∴Ans:(x,y) = (6,6) , (11,6)
2009-08-20 18:38:13 補充:
這裡有同餘的一些定義與性質介紹:
http://tw.knowledge.yahoo.com/question/question?qid=1008102102445
2009-08-20 21:29:44 補充:
更正:
(1)x=1時:y+6-x=11 => y+6-1=11 => y=6 => (x,y)=("1",6)
(2)x=11時:y+6-x=1 => y+6-11=1 => y=6 => (x,y)=(11,6)
∴Ans:(x,y) = ("1",6) , (11,6)
竟然被說粗心了,orz