[(x+2)/(x^2 -1)] - [3/(2x-2)] = ?

2009-08-18 2:50 pm
I don't know why I got mine wrong from the answer key.

I found the common denominators to be 2(x+1)(x-1), hence, I calculated my numerator to be 1-x.

So I should get -1/2(x+1)

But it's really off the answer.

回答 (9)

2009-08-18 2:56 pm
✔ 最佳答案
[ (x + 2) / (x² - 1) ] - [ 3 / (2x - 2) ] =

[ (x + 2) / ((x - 1) (x + 1)) ] - [ 3 / (2 (x - 1)) ] =

[ (2 (x + 2)) / (2 (x - 1) (x + 1)) ] - [ (3 (x + 1)) / (2 (x - 1) (x + 1)) ] =

[ 2 (x + 2) - 3 (x + 1) ] / [ 2 (x - 1) (x + 1) ] =

[ 2x + 4 - 3x - 3 ] / [ 2 (x - 1) (x + 1) ] =

[ - x + 1 ] / [ 2 (x - 1) (x + 1) ] =

[ - (x - 1) ] / [ 2 (x - 1) (x + 1) ] =

- 1 / [ 2 (x + 1) ]

*******
2009-08-18 10:05 pm
= ([x + 2]/[x² - 1]) - (3/[2x - 2])
= ([x + 2]/[{x + 1}{x - 1}]) - (3/[2{x - 1})
= (2x + 4 - 3x - 3)/(2[x + 1][x - 1])
= (1 - x)/(2[x + 1][x - 1])
= (x - 1)/(- 2[x + 1][x - 1])
= - 1/(2[x + 1])

Answer: - 1/(2[x + 1])
2009-08-18 10:08 pm
[(x + 2)/(x² - 1)] - [3/(2x - 2)]
= [(x + 2)/(x - 1)(x + 1)] - [3/2(x - 1)]
= [2(x + 2) - 3(x + 1]/2(x - 1)(x + 1)
= -(x - 1)/2(x - 1)(x + 1)
= -1/(2x + 1)
2009-08-18 9:59 pm
Your answer is correct.
2009-08-21 1:49 am
( x + 2 ) / [ ( x - 1 ) ( x + 1 ) ] - (3/2) [ 1 / ( x - 1 ) ]

2x + 4 - 3 ( x + 1 )
------------------------------
2 ( x - 1 ) ( x + 1 )

1 - x
----------------------
2 ( x - 1 ) ( x + 1 )

- ( x - 1 )
-------------------------------
2 ( x - 1 ) ( x + 1 )

- 1
-------------------
2 ( x + 1 )
2009-08-19 12:40 am
(x + 2)/(x^2 - 1) - 3/(2x - 2)
= (x + 2)/[(x + 1)(x - 1)] - 3/[2(x - 1)]
= [2(x + 2)]/[2(x + 1)(x - 1)] - [3(x + 1)]/[2(x + 1)(x - 1)]
= (2x + 4)/[2(x + 1)(x - 1)] - (3x + 3)/[2(x + 1)(x - 1)]
= (2x + 4 - 3x - 3)/[2(x + 1)(x - 1)]
= (-x + 1)/[2(x + 1)(x - 1)]
= -(x - 1)/[2(x + 1)(x - 1)]
= -1/[2(x + 1)]
2009-08-18 10:18 pm
There is no need for brackets around each fraction because division always comes before addition unless there are brackets.

(x + 2) / (x² - 1) - 3 / (2x - 2)
(x + 2) / (x + 1)(x - 1) - 3 / 2(x - 1)
2(x + 2) / 2(x + 1)(x - 1) - 3(x + 1) / 2(x + 1)(x - 1)
[2(x + 2) - 3(x + 1)] / 2[x + 1][x - 1]
[2x + 4 - 3x - 3] / 2[x + 1][x - 1]
(1 - x) / 2(x + 1)(x - 1)
-(x - 1) / 2(x + 1)(x - 1)
-1 / 2(x + 1)
-1 / (2x + 2)
2009-08-18 10:13 pm
[(x+2)/(x^2 -1)] - [3/(2x-2)] = [(x+2)/(x+1)(x-1)] - [3/2(x-1)]
= [(x+2)/(x+1)(x-1)] - [3(x+1)/2(x-1)(x+1)]
= [2(x+2)/2(x+1)(x-1)] - [3(x+1)/2(x-1)(x+1)]
= [(2x+4-3x-3)/2(x+1)(x-1)]
= -x+1/2(x+1)(x-1)
= 1-x/-2(x+1)(1-x)
= -1/2(x+1)
Check: Let x = 2.

[(2+2)/(2^2 -1)] - [3/(4-2)] = 4/3 - 3/2 = -1/6

For -1/2(x+1) = -1/2(2+1) = -1/6
2009-08-18 10:06 pm
x+2.........3
-------- - ---------
x^2-1.....2x-2

....x+2...............3
=-------------- - ------------- lcd 2(x+1)(x-1)
..(x+1)(x-1).....2(x-1)

...2(x+2)-3(x+1)
=-----------------------
.......2(x^2-1)

....2x+4-3x-3
=------------------
.......2(x^2-1)

....-x+1
=-------------
...2(x^2-1)

....-(x-1)
=----------------
..2(x+1)(x-1)

.....-1
=---------- answer//
..2(x+1)


收錄日期: 2021-05-01 12:41:30
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090818065036AAjK5DA

檢視 Wayback Machine 備份