✔ 最佳答案
讓我今晚試試,謝謝doraemonpaul這麼多的提示意見!
2009-08-30 20:44:19 補充:
(A)∫[0~∞] (sinx)^(2n)/x² dx= n∫[0~∞] (sinx)^(2n-2)*sin(2x)/x dx
(B) 2∫[0~π/2] (sinx)^(2a-1)*(cosx)^(2b-1) dx=Beta(a, b) , for a, b>0
Beta(a, b)=Gamma(a)Gamma(b)/Gamma(a+b)
Gamma(1/2)=√π, Gamma(n)=(n-1)!
(C)∫[0~∞] sin(nx)/x dx = ∫[0~∞] sinx/x dx =π/2 , for n>0
(D)∫[0~∞] cos(2nx)*sin(2x)dx=0 , for n>1
(E) Fourier expansion for (sinx)^(2n-2)
Let (sinx)^(2n-2)=a0+a1cos(2x)+a2cos(4x)+... (Finite terms and P=π)
a0=1/(2π)∫[-π~π] (sinx)^(2n-2) dx
= 1/π*2∫[0~π/2] (sinx)^(2n-2) dx (Even function)
= 1/π*Beta(n- 1/2, 1/2)= (2n-2)!/[2^(n-1)*(n-1)!]² (By (B) )
a1=1/π *∫[-π~π] (sinx)^(2n-2)*cos(2x) dx
= 2/π * 2∫[0~π/2] [(sinx)^(2n-2)- 2(sinx)^(2n)] dx
= 2/π *[ Beta(n -1/2, 1/2)- 2Beta(n +1/2, 1/2)] (By (B) )
= 2(1-n)/n * a0
(F)∫[0~∞] (sinx)^(2n) / x² dx
= n∫[0~∞] (sinx)^(2n-2)*sin(2x)/x dx (By (A) )
= n∫[0~∞] (a0+a1cos2x)*sin(2x)/x dx (By (D) )
= n∫[0~∞] [a0*sin(2x)+a1*(1/2)sin(4x)]/x dx
= n∫[0~∞] [ a0 sinx + a1*(1/2) sinx]/x dx (By (C) )
= n∫[0~∞] [ a0+ (1-n)/n*a0](sinx)/x dx (By (E) part II)
= a0*π/2= (π/2)*(2n-2)!/[2^(n-1)*(n-1)!]² (By (E) part I)
= 2π*( 2n-2)!/[2^n*(n-1)!]²
Q.E.D.