✔ 最佳答案
1. Beta(x, y)=2∫[0~pi/2] (sint)^(2x-1)*(cost)^(2y-1) dt
x, y為正數
2. Beta(x, y)= Gamma(x)Gamma(y)/Gamma(x+y)
3. Gamma(x)Gamma(1-x)= pi/ sin(pi*x)
4.用三角代換法 x=(tanu)^(2/n), dx=(2/n)(tanu)^(2/n -1)*(secu)^2 du
∫[0~∞] dx/(x^n + 1)
=∫[0~pi/2] (2/n)(sinu/cosu)^(2/n-1) du
= (1/n)*2∫[0~∞] (sinu)^(2/n -1) *(cosu)^(1-2/n) du
2x-1= 2/n -1, 得 x= 1/n
2y-1= 1-2/n, 得 y=1-1/n
= (1/n)*Beta(1/n, 1-1/n) (公式1)
= (1/n)*Gamma(1/n)Gamma(1- 1/n)/Gamma(1) (公式2)
= (1/n)* pi/ sin(pi/n) (公式3)
= (pi/n) / sin(pi/n) (對任意 n>0都可以)