4題三角比的問題

2009-08-11 1:20 am
已知tanA=3/4。計算:
1.(2sinA+cosA)/sinA
2.(3sinA-4cosA)/(3sinA+4cosA)
分解:
3.1/tan^2A(sin^2A)
4.(sinA-cosA)^2+2sinAcosA

回答 (1)

2009-08-11 1:32 am
✔ 最佳答案
1.(2sinA+cosA)/sinA
= 2 + cosA / sinA
= 2 + 1 / tanA
= 2 + 1 / (3/4)
= 10/3
2.(3sinA-4cosA)/(3sinA+4cosA)
= [(3sinA - 4cosA) / cosA] / [(3sinA + 4cosA)/cosA]
= (3tanA - 4) / (3tanA + 4)
= (3 * 3/4 - 4) / (3 * 3/4 + 4)
= - 7 / 25
分解:
3. 1/tan^2A (sin^2A)
= (cosA / sinA)^2 * (sinA)^2
= (cosA)^2

4. (sinA-cosA)^2+2sinAcosA
= (sinA)^2 - 2sinAcosA + (cosA)^2 + 2sinAcosA
= (sinA)^2 + (cosA)^2
= 1



收錄日期: 2021-04-21 22:08:59
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090810000051KK01538

檢視 Wayback Machine 備份