✔ 最佳答案
在數學版問怎麼用 英文 說 台灣迷信 ?
2009-08-08 12:41:41 補充:
我還在想怎麼用一個式子表示An
2009-08-08 13:49:14 補充:
答案: An=[1-{(n+2)/4 - [(n+2)/4]}]*2 + [1-{n/4 - [n/4]}]*4
(高斯符號 [x]表示不大於x的最大整數,如[3.4]=3,[5]=5)
====================================
[說明]
1.當n=4k+1(其中k為非負整數)時:
(n+2)/4 - [(n+2)/4] = (k + 3/4) - [k + 3/4] = (k + 3/4) - k = 3/4
n/4 - [n/4] = (k + 1/4) - [k + 1/4] = (k + 1/4) - k = 1/4
=> [1-{(n+2)/4 - [(n+2)/4] }] = [1-3/4] = [1/4] = 0
[1-{n/4 - [n/4]}] = [1-1/4] = [3/4] = 0
=> An = 0*2 + 0*4 = 0
2.當n=4k+2(其中k為非負整數)時:
(n+2)/4 - [(n+2)/4] = (k + 4/4) - [k + 4/4] = (k + 1) - (k + 1) = 0
n/4 - [n/4] = (k + 2/4) - [k + 2/4] = (k + 1/4) - k = 1/4
=> [1-{(n+2)/4 - [(n+2)/4] }] = [1-0] = [1] = 1
[1-{n/4 - [n/4]}] = [1-1/4] = [3/4] = 0
=> An = 1*2 + 0*4 = 2
3. 當n=4k+3(其中k為非負整數)時:
(n+2)/4 - [(n+2)/4] = (k + 5/4) - [k + 5/4] = (k + 1 + 1/4) - (k+1) = 1/4
n/4 - [n/4] = (k + 3/4) - [k + 3/4] = (k + 3/4) - k = 3/4
=> [1-{(n+2)/4 - [(n+2)/4] }] = [1-1/4] = [3/4] = 0
[1-{n/4 - [n/4]}] = [1-3/4] = [1/4] = 0
=> An = 0*2 + 0*4 = 0
4. 當n=4k+4(其中k為非負整數)時:
(n+2)/4 - [(n+2)/4] = (k + 6/4) - [k + 6/4] = (k + 1 + 2/4) - (k + 1) = 2/4
n/4 - [n/4] = (k + 4/4) - [k + 4/4] = (k + 1) - (k + 1) = 0
=> [1-{(n+2)/4 - [(n+2)/4] }] = [1-2/4] = [2/4] = 0
[1-{n/4 - [n/4]}] = [1-0] = [1] = 1
=> An = 0*2 + 1*4 = 4
2009-08-09 00:20:54 補充:
真的有錯,哈,不好意思,改版太多次,有的地方沒改到。
目前在想能不能用sin來寫通式