數學題X1

2009-08-08 6:45 pm
列出一通式An表出數列<0,2,0,4,0,2,0,4........>
更新1:

To 我思 謝謝你的解答...真是太棒了 不過你在說明2的部分 應該是 n/4 - [n/4] = (k + 2/4) - [k + 2/4] = (k + 1/2) - k = 1/2

更新2:

說明: 2.當n=4k+2(其中k為非負整數)時: (n+2)/4 - [(n+2)/4] = (k + 4/4) - [k + 4/4] = (k + 1) - (k + 1) = 0 n/4 - [n/4] = (k + 2/4) - [k + 2/4] = (k + 1/2) - k = 1/2 => [1-{(n+2)/4 - [(n+2)/4] }] = [1-0] = [1] = 1   [1-{n/4 - [n/4]}] = [1-1/2] = [1/2] = 0 => An = 1*2 + 0*4 = 2

回答 (5)

2009-08-08 9:49 pm
✔ 最佳答案
在數學版問怎麼用 英文 說 台灣迷信 ?

2009-08-08 12:41:41 補充:
我還在想怎麼用一個式子表示An

2009-08-08 13:49:14 補充:
答案: An=[1-{(n+2)/4 - [(n+2)/4]}]*2 + [1-{n/4 - [n/4]}]*4
(高斯符號 [x]表示不大於x的最大整數,如[3.4]=3,[5]=5)

====================================
[說明]
1.當n=4k+1(其中k為非負整數)時:
(n+2)/4 - [(n+2)/4] = (k + 3/4) - [k + 3/4] = (k + 3/4) - k = 3/4
n/4 - [n/4] = (k + 1/4) - [k + 1/4] = (k + 1/4) - k = 1/4

=> [1-{(n+2)/4 - [(n+2)/4] }] = [1-3/4] = [1/4] = 0
  [1-{n/4 - [n/4]}] = [1-1/4] = [3/4] = 0

=> An = 0*2 + 0*4 = 0

2.當n=4k+2(其中k為非負整數)時:
(n+2)/4 - [(n+2)/4] = (k + 4/4) - [k + 4/4] = (k + 1) - (k + 1) = 0
n/4 - [n/4] = (k + 2/4) - [k + 2/4] = (k + 1/4) - k = 1/4

=> [1-{(n+2)/4 - [(n+2)/4] }] = [1-0] = [1] = 1
  [1-{n/4 - [n/4]}] = [1-1/4] = [3/4] = 0

=> An = 1*2 + 0*4 = 2

3. 當n=4k+3(其中k為非負整數)時:
(n+2)/4 - [(n+2)/4] = (k + 5/4) - [k + 5/4] = (k + 1 + 1/4) - (k+1) = 1/4
n/4 - [n/4] = (k + 3/4) - [k + 3/4] = (k + 3/4) - k = 3/4

=> [1-{(n+2)/4 - [(n+2)/4] }] = [1-1/4] = [3/4] = 0
  [1-{n/4 - [n/4]}] = [1-3/4] = [1/4] = 0

=> An = 0*2 + 0*4 = 0

4. 當n=4k+4(其中k為非負整數)時:
(n+2)/4 - [(n+2)/4] = (k + 6/4) - [k + 6/4] = (k + 1 + 2/4) - (k + 1) = 2/4
n/4 - [n/4] = (k + 4/4) - [k + 4/4] = (k + 1) - (k + 1) = 0

=> [1-{(n+2)/4 - [(n+2)/4] }] = [1-2/4] = [2/4] = 0
  [1-{n/4 - [n/4]}] = [1-0] = [1] = 1

=> An = 0*2 + 1*4 = 4


2009-08-09 00:20:54 補充:
真的有錯,哈,不好意思,改版太多次,有的地方沒改到。
目前在想能不能用sin來寫通式
2009-08-10 9:37 am
(參考一下!)
0,2,0,4四個一循環,可設A(n)=a+bi^n+c(-1)^n+d(-i)^n , ( i^2 = -1)
A(1)=0 = a+bi- c - di
A(2)=2 = a- b + c - d
A(3)=0 = a - bi - c +di
A(4)=4 = a+ b + c + d
解四式聯立得 a=c= 3/2, b=d= 1/2
故A(n)=[ 3+i^n+ 3(-1)^n +(-i)^n ] / 2, n=1,2,3,4,....

答案可以有很多型式
2009-08-08 8:19 pm
n=2k+1或n=2k+3時,An=0
n=2k,k屬於奇數時,An=2
k屬於偶數時,An=4
參考: 自己
2009-08-08 7:49 pm
n=4k時:An=4

n=4k+1:An=0

n=4k+2:An=2

n=4k+3:An=0
參考: 小弟的淺見
2009-08-08 7:01 pm


收錄日期: 2021-04-30 13:54:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090808000016KK02702

檢視 Wayback Machine 備份