Trig. Question

2009-08-01 5:08 am
a, b and c are the 3 sides of a triangle and the corresponding angles are A, B and C. Prove that (a - b) / (a + b) = tan[(A - B)/2] / tan[(A + B)/2].

回答 (2)

2009-08-01 5:26 am
✔ 最佳答案
(a - b) / (a + b) = tan[(A - B)/2] / tan[(A + B)/2].
By sine law:
L.H.S. = (sinA - sinB) / (sinA + sinB)
= 2cos[(A+B)/2] * sin[(A-B)/2 ] / {2sin[(A+B)/2] * cos[(A-B)/2] }
= sin[(A-B)/2] / cos[(A-B)/2] * cos[(A+B)/2] / sin[(A+B)/2]
= sin[(A-B)/2] / cos[(A-B)/2] / {sin[(A+B)/2] / cos[(A+B)/2]}
= tan[(A - B)/2] / tan[(A + B)/2]
= R.H.S.


2009-08-01 5:27 am
正切定律


收錄日期: 2021-04-21 22:02:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090731000051KK02023

檢視 Wayback Machine 備份