✔ 最佳答案
a)
when n=1 ,
1*7=1/6*1*(1+1)(2+19)=7
Assume for some positive integer k
i.e. 1x7+2x8+3x9+...+k(k+6)=1/6k(k+1)(2k+19)
For n=k+1
1x7+2x8+3x9+...+k(k+6)+(k+1)(k+7)
=1/6k(k+1)(2k+19)+(k+1)(k+7) (by assumption)
=1/6(k+1)[k(2k+19)+6(k+7)]
=1/6(k+1)(2k^2+25k+42)
=1/6(k+1)(k+2)(2k+21)
=1/6(k+1)(k+2)[2(k+1)+19]
By M.I. , the statement is true for all positive integers n
b)
1x2+2x3+3x4+...+n(n+1)
=1x(7-5)+2x(8-5)+3x(9-5)+...+n[(n+6)-5]
=(1x7-5)+(2x8-2x5)+(3x9-3x5)+...+n(n+6)-5n
=1x7+2x8+3x9+...+n(n+6)-(5+2x5+3x5+...+5n)
=1x7+2x8+3x9+...+n(n+6)-5(1+2+3+...+n)
=1/6n(n+1)(2n+19)-5n(n+1)/2
=n^3/3+n^2+2n/3
=1/3n(n+1)(n+2)
2009-07-31 00:05:22 補充:
一般做MI時都會刪去"Let P(n) be the statement "...." "呢句唔寫的
同埋記住MI係對於非負整數時先用到,對實數係用唔到
同埋假設ASSUMPTION個度要睇番題目對什麼數去證明,如正整數/非負整數,要寫清楚
b part都係基本的延伸題,想法儘量寫成a part的樣式
for all positive integers n= ∀n∈ℕ
∀=for all
∈=belongs to
ℕ=natural number set
2009-07-31 00:09:09 補充:
btw, 你應該係預備新高中學制的M2課程嗎?