✔ 最佳答案
1a) L.H.S.= cos(42-Y)tan(42-Y)
= cos (42-Y) * sin (42-Y)/cos(42-Y)
= sin(42-Y)
= cos[90-(42-Y)]
= cos (48 +Y)
Thus, cos (48 +Y)= cos(2Y+18)
48+Y = 2Y+18
Y=30
b) Put y=30
3cosYsin(15+Y)tan 2Y= 3 cos30 sin45 tan 60
= √3/2 * √2/2 * √3
=3√2 / 4
2a) L.H.S.= sin^2 Y - cos^2 Y
=sin^2 Y + cos^2 Y - 2 cos^2 Y
= 1- 2 cos^2 Y
=R.H.S.
therefore, sin^2 Y - cos^2 Y = 1-2cos^2 Y
b) L.H.S.= sin^4 Y - cos^4
= (sin^2 Y)^ 2 -(cos^2 Y)^ 2
= ( sin^2 Y-cos^2 Y)( sin^2 Y+cos^2 Y)
= ( sin^2 Y-cos^2 Y)*1
= 1-2cos^2 Y
=R.H.S.
Therefore, sin^4 Y - cos^4 = 1-2cos^2 Y.
2009-07-30 13:26:03 補充:
" √" 是開方
2009-07-30 13:30:45 補充:
1b)b) Put y=30
3cosYsin(15+Y)tan 2Y
= 3 cos30 sin45 tan 60
= 3*√3/2 * √2/2 * √3
=9√2 / 4