✔ 最佳答案
1.
所用公式:
sin2A + cos2A = 1
cosA/sinA = cotA
f(A)
= (2 + cos2A)/(sin2A + sinAcosA)
= [2(sin2A + cos2A) + cos2A]/(sin2A + sinAcosA)
= (2sin2A + 3cos2A)/(sin2A + sinAcosA)
= [(2sin2A + 3cos2A)/sin2A]/[(sin2A + sinAcosA)/sin2A]
= (2 + 3cot2A)/(1 + cotA)
= [2 + 3(-3)2]/[1 + (-3)]
= 29/(-2)
= -29/2
2.
所用公式:
y2 + 4y + 4 = (y + 2)2,即sin2θ + 4sinθ + 4 = (sinθ + 2)2
sin2θ+ cos2θ= 1, 即 cos2θ= 1 - sin2θ
y = (1/4)cos2θ - sinθ
y = (1/4)(1 - sin2θ) - sinθ
y = (1/4) - (1/4)sin2θ - sinθ
y = (1/4) - 1/4(sin2θ + 4sinθ + 4) + (1/4)(4)
y = (5/4) - 1/4(sinθ + 2)2
-1 ≤ sinθ ≤ 1
當 sinθ = -1時, (sinθ + 2)2 的最小值 = (-1 + 2)2 = 1
y 的最大值 = (5/4) - (1/4)(1)
y 的最大值 = 1
當 sinθ = 1 時, (sinθ + 2)2 的最大值 = (1 + 2)2 = 9
y 的最小值 = (5/4) - (1/4)(9)
y 的最小值 = -1
3.
公式:sin(π - A) = sinA
公式:cosAsinB = [sin(A + B) - sin(A - B)]/2
所以:
cos2x.sinx = (sin3x - sinx)/2
cos4x.sinx = (sin5x - sin3x)/2
cos6x.sinx = (sin7x - sin5x)/2
cos8x.sinx = (sin9x - sin7x)/2
cos10x.sinx = (sin11x - sin9x)/2
設 x = π/11
左方
= cos(2π/11) + cos(4π/11) + cos(6π/11) + cos(8π/11) + cos(10π/11)
= cos2x + cos4x + cos6x + cos8x + cos10x
= (cos2x + cos4x + cos6x + cos8x + cos10x).(sinx/sinx)
= (cos2x.sinx + cos4x.sinx + cos6x.sinx + cos8x.sinx + cos10x.sinx)/sinx
= [(sin3x-sinx)/2 + (sin5x-sin3x)/2 + (sin7x-sin5x)/2 + (sin9x-sin7x)/2 + (sin11x-sin9x)/2]/sinx
= (sin3x - sinx + sin5x - sin3x + sin7x - sin5x + sin9x - sin7x + sin11x - sin9x)/(2sinx)
= (sin11x - sinx)/(2sinx)
= [sin11(π/11) - sinx]/(2sin)
= (sinπ - sinx)/(2sinx)
= (0 - sinx)/(2sinx)
= -sinx/(2sinx)
= -1/2
= 右方
4.
所用公式:
tanA = sinA/cosA
sin2A + cos2A = 1 即 cos2A = 1- sin2A
cos2A = 2cos2A - 1
已知: tan2α = 2tan2β + 1
sin2α/cos2α = 2sin2β/cos2β + 1
sin2α/cos2α + 1 = 2sin2β/cos2β + 2
(sin2α + cos2α)/cos2α = (2sin2β + 2cos2β)/cos2β
1/cos2α = 2(sin2β + cos2β)/cos2β
1/cos2α = 2/cos2β
交叉相乘得: 2cos2α = cos2β
2cos2α - cos2β = 0
2cos2α - (1 - sin2β) = 0
(2cos2α - 1) + sin2β = 0
cos2α + sin2β = 0