F.4 amath !!!!!!!

2009-07-24 5:08 am
Q.1
1987 CE AMATH PAPER2 #12b
α and β are two acute angles satisfying the equation
6cos²θ– 5cosθ+ 1 = 0
Without solving the equation, show that
cos ( α+β/2 ) + cos ( α-β/2 ) = √2

ANS:
α+β =5/6 , αβ=1/6
cos ( α+β/2 ) + cos ( α-β/2 )
= 2cosα/2 cosβ/2
= 2[1/2( 1+ cosα)]^0.5[1/2(1+ cosβ)]^0.5
= [( 1+ cosα) (1+ cosβ)]^0.5
= [1+( cosα+ cosβ )+ cosαcosβ ]^0.5
= (1+5/6+1/6)^0.5 ← 點解cosα+ cosβ=5/6 同 cosαcosβ=1/6 ?
= 2^0.5


Q.2
1995 CE AMATH PAPER2 #9a
Show that cos²A - cos²B = sin(A+B)sIn(B-A)

ANS:
cos²A - cos²B
= (cosA + cosB) (cosA - cosB)
= [ 2cos(A+B/2) cos(A-B/2)][-2sin(A+B/2)sin(A-B/2)]
= [2sin(A+B/2)cos(A+B/2)][-2 sin(A-B/2) cos(A-B/2)]
= -sin(A+B) sin(A-B) ← 點樣轉成依步 ?
= sin(A+B) sin(B-A) ← 點解個負冇左 就變成咁 ?
更新1:

alpha and beta are two acute angles satisfying the equation

更新2:

alphaand beta are two acute angles satisfying the equation

更新3:

alpha and beta are two acute angles satisfying the equation

更新4:

點解 cos α 及 cos β 是其兩根 ?

回答 (1)

2009-07-24 5:33 am
✔ 最佳答案
1)點解cosα+ cosβ=5/6 同 cosαcosβ=1/6 ?
因為 6cosθ– 5cosθ+ 1 = 0,
cos α 及 cos β 是其兩根 ,
兩根之和 cosα+ cosβ= -b/a = -(- 5)/6 = 5/6
兩根之積 cosαcosβ = c/a = 1/6
2)只是二倍角公式的應用 : Sin 2A = 2 sinA cos B
[2sin(A+B/2)cos(A+B/2)][-2 sin(A-B/2) cos(A-B/2)]
= sin[2(A+B)/2] * - sin[2(A-B)/2]
= sin(A+B) * - sin(A-B)
= sin(A+B) * sin[-(A-B)] ......sin(-x) = - sinx
= sin(A+B) * sin(B-A)




2009-07-23 21:36:07 補充:
第二行應是 6(cosθ)^2– 5cosθ+ 1 = 0

2009-07-26 04:16:39 補充:
題目已經講明 :
alpha; and beta; are two acute angles satisfying the equation
6cos²θ– 5cosθ+ 1 = 0

所以θ = alpha or = beta

The roots of the equation = cos alpha = cos A or = cos beta = cos B.

2009-07-26 04:17:04 補充:
題目已經講明 :
alpha; and beta; are two acute angles satisfying the equation
6cos²θ– 5cosθ+ 1 = 0

所以θ = alpha or = beta

The roots of the equation = cos alpha = cos A or = cos beta = cos B.

2009-07-26 04:18:06 補充:
題目已經講明 :
alpha; and beta; are two acute angles satisfying the equation
6cos²θ– 5cosθ+ 1 = 0

所以θ = alpha or = beta

The roots of the equation = cos alpha = cos A or = cos beta = cos B.


收錄日期: 2021-04-21 22:04:14
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090723000051KK02014

檢視 Wayback Machine 備份