trigonometric Question

2009-07-23 3:35 am
1.find the values of x in the range 0≦x≦2π for sin2x+cosx≦0
(the ans is 3π/2<x<11π/6, π/2<x<7π/6, I want steps)

2. If sin x and sec x (0<x<2π)are the roots of the equation 2x^2+kx+1=0, find the value of k (leave your ans in surd)

3.the two roots of the equation 3x^2-4x+k=0 are sin x and cos x
a)find the values of k
b)find he vales of (sin x)/(1-cotx)+(cos x)/(1-tanx)

回答 (2)

2009-07-23 6:18 am
✔ 最佳答案
1.
sin2x + cosx <= 0
2sinxcosx + cosx <= 0
cosx(2sinx + 1)<=0
{Case I: cosx<=0 and sinx>-1/2} or {Case II: cosx>=0 and sinx<=-1/2}
Case I: cosx <=0 => π/2<= x <= 3π/2
sinπ/6 =1/2
sin7π/6 = -1/2, when x increases further sinx becomes more negative.
So for case I the answer is π/2 <= x <= 7π/6
Case II: cosx >= 0 =>
0 <= x <= π/2<= x <= π/2 (in first quadrant) OR 3π/2 <= x <= 2π (in fourth quadrant)
Since sinx <= -1/2, x must be in the 4th quadrant.
sin11π/6 = -1/2
therefore 3π/2<x<11π/6
2.
Sum of roots = -k/2
Product of roots =1/2
sinx + secx = -k/2 … (1)
sinxsecx = 1/2 = tanx ...(2)
Case I: x is in first quadrant,
sinx = 1/(12+22) = 1/√5
cosx = 2/(12+22) = 2/√5
sinx + secx = 1/√5 + √5/2 = (2+5)/2√5 = 7√5/10 and k = - 7√5/5
Case II: x is in third quadrant,
sinx = - 1/(12+22) = - 1/√5
cosx = - 2/(12+22) = - 2/√5
sinx + secx = - 1/√5 - √5/2 = - (2+5)/2√5 = - 7√5/10 and k = 7√5/5
3.
(a)Sum of roots = 4/3 = sinx + cosx
Product of roots = k/3 = sinxcosx
(4/3)2 = (sinx+cosx)2
16/9 = sin2x + cos2x + 2sinxcosx
16/9 – 1 = 2k/3
7/9 = 2k/3
k = 7/6
b)
(sin x)/(1-cotx)+(cos x)/(1-tanx)
=sinx/[(sinx-cosx)/sinx] + cosx/[(cosx – sinx)/cosx]
= sin2x/(sinx – cosx) – cos2x/(sinx – cosx)
= (sinx + cosx)(sinx – cosx)/(sinx – cosx)
= sinx + cosx
=Sum of roots = 4/3
2009-07-23 5:46 am

1.find the values of x in the range 0<=x<=2pi,for sin2x+cosx<=0
(the ans is 3π/2<x<11π/6,π/2<x<7π/6,I want steps)
sin2x+cosx<=0
sin2x<=-cosx
sin2x<=sin(3pi/2+x)
2sinxcosx+cosx<=0
cosx(1+2sinx)<=0
(1) cosx>=0
=>0<=x<=pi/2 or 3pi/2<=x<=2pi--------(1)
1+2sinx<=0
1<=-2sinx
-1/2>=sinx=> 7pi/6<=x<=11pi/6-------(2)
Compare (1)(2)
3pi/2<=x<=11pi/6-------------------------(3)
(2) cosx<=0 =>pi/2<=x<=3pi/2----------(4)
1+2sinx>=0
-1/2<=sinx=> 0<=x<=7pi/6 or 11pi/6<=x<=2pi--------(5)
Compare (4)(5)
pi/2<=x<=7pi/6---------------------(6)
Combine (3)(6) 3pi/2<=x<=11pi/6 or pi/2<=x<=7pi/6

2. If sin x and sec x (0<x<2π)are the roots of the equation 2x^2+kx+1=0, find the
value of k (leave your ans in surd)
sinx+secx=-k/2,sinxsecx=1/2
sinxsecx=1/2
tanx=1/2
(1) sinx>0,secx>0
sinx=2/sqrt(5),cosx=1/sqrt(5),secx=sqrt(5)
2/sqrt(5)+sqrt(5)=-k/2
2sqrt(5)/5+sqrt(5)=-k/2
k=-14sqrt(5)/5
(2) sinx<0,secx<0
sinx=-2/sqrt(5),cosx=-1/sqrt(5),secx=-sqrt(5)
-2/sqrt(5)-sqrt(5)=-k/2
2sqrt(5)/5+sqrt(5)=k/2
k=14sqrt(5)/5

3.the two roots of the equation 3x^2-4x+k=0 are sin x and cos x
a)find the values of k
sinx+cosx=4/3,sinxcosx=k/3
sin^2 x+2sinxcosx+cos^2 x=16/9
1+k/6=16/9
k/6=7/9
k=42/9=14/3
b)find he vales of (sin x)/(1-cotx)+(cos x)/(1-tanx)
(sin x)/(1-cotx)+(cosx)/(1-tanx)
=sin^2 x/[sinx(1-cosx/sinx)]+cos^2 x/[cosx(1-sinx/cosx)]
=sin^2x/(sinx-cosx)+cos^2x/(cosx-sinx)
=sinx+cosx=4/3



收錄日期: 2021-04-23 23:19:49
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090722000051KK01799

檢視 Wayback Machine 備份