✔ 最佳答案
1.
sin2x + cosx <= 0
2sinxcosx + cosx <= 0
cosx(2sinx + 1)<=0
{Case I: cosx<=0 and sinx>-1/2} or {Case II: cosx>=0 and sinx<=-1/2}
Case I: cosx <=0 => π/2<= x <= 3π/2
sinπ/6 =1/2
sin7π/6 = -1/2, when x increases further sinx becomes more negative.
So for case I the answer is π/2 <= x <= 7π/6
Case II: cosx >= 0 =>
0 <= x <= π/2<= x <= π/2 (in first quadrant) OR 3π/2 <= x <= 2π (in fourth quadrant)
Since sinx <= -1/2, x must be in the 4th quadrant.
sin11π/6 = -1/2
therefore 3π/2<x<11π/6
2.
Sum of roots = -k/2
Product of roots =1/2
sinx + secx = -k/2 … (1)
sinxsecx = 1/2 = tanx ...(2)
Case I: x is in first quadrant,
sinx = 1/(12+22) = 1/√5
cosx = 2/(12+22) = 2/√5
sinx + secx = 1/√5 + √5/2 = (2+5)/2√5 = 7√5/10 and k = - 7√5/5
Case II: x is in third quadrant,
sinx = - 1/(12+22) = - 1/√5
cosx = - 2/(12+22) = - 2/√5
sinx + secx = - 1/√5 - √5/2 = - (2+5)/2√5 = - 7√5/10 and k = 7√5/5
3.
(a)Sum of roots = 4/3 = sinx + cosx
Product of roots = k/3 = sinxcosx
(4/3)2 = (sinx+cosx)2
16/9 = sin2x + cos2x + 2sinxcosx
16/9 – 1 = 2k/3
7/9 = 2k/3
k = 7/6
b)
(sin x)/(1-cotx)+(cos x)/(1-tanx)
=sinx/[(sinx-cosx)/sinx] + cosx/[(cosx – sinx)/cosx]
= sin2x/(sinx – cosx) – cos2x/(sinx – cosx)
= (sinx + cosx)(sinx – cosx)/(sinx – cosx)
= sinx + cosx
=Sum of roots = 4/3