If f(x)=-3x+2 and g(x)=2x+9, find (gof)(x)?

2009-07-19 2:31 pm

回答 (8)

2009-07-19 2:35 pm
✔ 最佳答案
g(- 3x + 2) = 2( - 3x + 2) + 9
2009-07-19 9:38 pm
Sub x =3x + 2 in g(x), we get
(gof)(x) = 2(3x + 2) + 9
= 6x + 4 + 9
= 6x + 13 (Answer)
2009-07-21 6:03 am
g [ f ( x ) ] = g [ 2 - 3 x ] = 4 - 6 x + 9 = 13 - 6 x
2009-07-19 10:08 pm
f(x) = -3x + 2
g(x) = 2x + 9

g(x) → (g o f)(x) = g[f(x)] = g(-3x + 2)

g(-3x + 2) = 2(-3x + 2) + 9
g(-3x + 2) = 2(-3x) + 2(2) + 9
g(-3x + 2) = -6x + 4 + 9
g(-3x + 2) = -6x + 13
2009-07-19 10:07 pm
g(- 3x + 2) = 2( - 3x + 2) + 9
2009-07-19 9:40 pm
2(-3x+2)+9 = -6x+13
2009-07-19 9:39 pm
(g0f)(x)=g(f(x))=g(- 3x + 2) = 2( - 3x + 2) + 9=
-6x+4+9=-6x+13


收錄日期: 2021-05-01 12:38:50
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090719063138AADE4pG

檢視 Wayback Machine 備份