Polynomials

2009-07-19 6:21 am
αβγf(x)showreal

Let α, β and γ be real and distinct and

     (x - α)(x - β)(x- γ) = x³ + px² + qx + r

(a) Show that

  1    1   1   3x² + 2px + q
(i) -------- + -------- + -------- = ------------------------
  x - α  x - β   x - γ  x³ + px² + qx + r

(ii) 3α² + 2pα + q = (α - β)(α - γ)

(b) Let f(x) be a real polynomial.
Suppose Ax² + Bx +C is the remainder when (3x² + 2px + q)f(x) is divided by (x³ + px² + qx + r).

(i) Prove that

  f(α)   f(β)  f(γ)   Ax² + Bx +C
  --------- + --------- + -------- = ------------------------
  x - α  x - β   x - γ  x³ + px² + qx + r

(ii) Express A, B and C in terms of α, β, γ, f(α), f(β) and f(γ).

回答 (4)

2009-07-19 6:58 am
✔ 最佳答案
(a i) (x - α)(x - β)(x- γ) = x + px + qx + r
ln (x - α) + ln (x - β) + ln (x- γ) = ln(x + px + qx + r)
Diff. both sides w.r.t. x:
1/(x - α) + 1/(x - β) + 1/(x- γ) = (3x + 2px + q)/(x + px + qx + r)
(ii) From (i), multiplying x + px + qx + r to both sides gives:
(x - β)(x- γ) + (x - α)(x- γ) + (x - α)(x - β) = 3x + 2px + q
Sub x = α:
(α - β)(α- γ) = 3α + 2pα + q
(b i) By division alg, we have:
(3x + 2px + q)f(x) = (x + px + qx + r)Q(x) + (Ax + Bx + C)
= (x - α)(x - β)(x- γ)Q(x) + (Ax + Bx + C)
where Q(x) is some polynomial with real coeff. Thus:
(3α + 2pα + q)f(α) = Aα + Bα + C
f(α) = (Aα + Bα + C)/(3α + 2pα + q)
(3β + 2pβ + q)f(β) = Aβ + Bβ + C
f(β) = (Aβ + Bβ + C)/(3β + 2pβ + q)
(3γ + 2pγ + q)f(γ) = Aγ + Bγ + C
f(γ) = (Aγ + Bγ + C)/(3γ + 2pγ + q)
Let (Ax + Bx + C)/(x + px + qx + r) = a/(x - α) + b/(x - β) + c/(x- γ)
Then:
(Ax + Bx + C)/(x + px + qx + r) = [a(x - β)(x- γ) + b(x - α)(x- γ) + c(x - α)(x - β)]/[(x - α)(x - β)(x- γ)]
Ax + Bx + C = a(x - β)(x- γ) + b(x - α)(x- γ) + c(x - α)(x - β)
By putting x = α, we have:
Aα + Bα + C = a(α - β)(α- γ)
a = (Aα + Bα + C)/[(α - β)(α- γ)] = (Aα + Bα + C)/(3α + 2pα + q) (From a ii)
= f(α)
Similarly, putting x = β and x = γ will give b = f(β) and c = f(γ) respectively.
So:
f(α)/(x - α) + f(β)/(x - β) + f(γ)/(x - γ) = (Ax + Bx + C)/(x + px + qx + r)
(ii) From (i), we have:
(Ax + Bx + C)/(x + px + qx + r) = f(α)/(x - α) + f(β)/(x - β) + f(γ)/(x - γ)
= [(x - β)(x- γ)f(α) + (x - α)(x- γ)f(β) + (x - α)(x - β)f(γ)]/[(x - α)(x - β)(x- γ)]
Ax + Bx + C = (x - β)(x- γ)f(α) + (x - α)(x- γ)f(β) + (x - α)(x - β)f(γ)
= [f(α) + f(β) + f(γ)]x - [(β+ γ)f(α) + (γ+ α)f(β) + (α+ β)f(γ)]x + [βγf(α) + γαf(β) + αβf(γ)]
Hence by comparing coeff on both sides:
A = f(α) + f(β) + f(γ)
B = (β+ γ)f(α) + (γ+ α)f(β) + (α+ β)f(γ)
C = βγf(α) + γαf(β) + αβf(γ)

2009-07-19 11:04:27 補充:
STEVIE-G™ 你都好好野, 邊年題目都記得!!!

2009-07-19 11:07:43 補充:
呢個 platform 真係唔多店, 唔單止個次方 show 唔到, 個負號都無啦啦同我剷埋:
B = - [(β+ γ)f(α) + (γ+ α)f(β) + (α+ β)f(γ)]
希望今次 show 到
參考: Myself
2009-07-19 9:05 am
佢考個年 xd check check 先xd
2009-07-19 7:26 am
B 要加上個負號?
2009-07-19 7:21 am
heehee,六呎將軍很熟吧,你考那年的題目!


收錄日期: 2021-04-22 00:47:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090718000051KK01878

檢視 Wayback Machine 備份