MATHS (指數與對數函數)
3. 化簡 4√a^3 * (a^2)^3 除√a
a. 1
b. a^23/4
c. a^25/4
d. a^17
6.若 x = log6 ,且 y = log 8 ,則 3x - y =
a. 27
b. 3 log 3
c. 21 log 3
d. log 18
7. 若 (logx)^2 + logx^2 = 3 ,求 x
9. 假設 y = log x。若 x增至原來的10倍 , 則 y的值會
回答 (2)
✔ 最佳答案
3. 答案是 b。
(4√a3) x (a2)3 / (√a)
= (a)3/4 x (a)6 / (a)1/2
= (a)3/4 + 6 - 1/2
= (a)3/4 + 24/4 - 2/4
= (a)23/4
6. 答案是 b。
3x - y
= 3log6 - log8
= 3log6 - log23
= 3log6 - 3log2
= 3(log6 - log2)
= 3log(6/2)
= 3log3
7.
設 y = logx
(logx)2 + logx2 = 3
(logx)2 + 2logx - 3 = 0
y2 + 2y - 3 = 0
(y - 1)(y + 3) = 0
y = 1 或 y = -3
logx = 1 或 log x = -3
x = (10)1 或 x = (10)-3
x = 10 或 x = 0.001
9.
y = logx
當 x = xo, y = yo:
yo = logxo
當 x = 10xo, y = y1:
y1 = log(10xo)
y1 = log10 + logxo
y1 = 1 + yo
y 的值會增加 1。
2009-07-18 19:38:17 補充:
3. 最尾一步錯了。答案應是 c。
(4√a^3) x (a^2)^3 / (√a)
= (a)^(3/4) x (a)^6 / (a)^(1/2)
= (a)^(3/4 + 6 - 1/2)
= (a)^(3/4 + 24/4 - 2/4)
= (a)^ 25/4
3. Ans. is c.
4√a^3 * (a^2)^3 除 √a
= a^(3/4) x a^(2x3) / a^(1/2)
= a^(3/4) x a^6 / a^(1/2)
= a^(3/4 + 6 – 1/2)
= a^(25/4)
收錄日期: 2021-04-30 12:56:05
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090718000051KK01314
檢視 Wayback Machine 備份