✔ 最佳答案
By the Cauchy Schwarz ineq, we have:
[Σ(i = 1 → n) ai4][Σ(i = 1 → n) bi4] = [Σ(i = 1 → n) (ai2)2][Σ(i = 1 → n) (bi2)2]
>= [Σ(i = 1 → n) ai2bi2]2
and [Σ(i = 1 → n) ci4][Σ(i = 1 → n) di4] >= [Σ(i = 1 → n) ci2di2]2
Hence, applying CS-ineq, we have:
[Σ(i = 1 → n) ai4][Σ(i = 1 → n) bi4][Σ(i = 1 → n) ci4][Σ(i = 1 → n) di4] >= [Σ(i = 1 → n) ai2bi2]2[Σ(i = 1 → n) ci2di2]2
= {[Σ(i = 1 → n) (aibi)2][Σ(i = 1 → n) (cidi)2]}2
>= {[Σ(i = 1 → n) (aibicidi)]2}2
= [Σ(i = 1 → n) (aibicidi)]4
Then by setting ai4 = ui3, bi4 = vi3, ci4 = ti3 and ai4 = uiviti, we have:
[Σ(i = 1 → n) ui3][Σ(i = 1 → n) vi3][Σ(i = 1 → n) ti3][Σ(i = 1 → n) uiviti] >= [Σ(i = 1 → n) uiviti]4
[Σ(i = 1 → n) ui3][Σ(i = 1 → n) vi3][Σ(i = 1 → n) ti3 >= [Σ(i = 1 → n) uiviti]3
Therefore, by replacing the dummy variables ui3, vi3, and ti3 by ai3, bi3, and ci3 respectively, we have:
[Σ(i = 1 → n) ai3][Σ(i = 1 → n) bi3][Σ(i = 1 → n) ci3 >= [Σ(i = 1 → n) aibici]3
2009-07-18 20:35:48 補充:
In fact for the power 3 one, it is only true for the positive nos.
Taking:
a1 = -1, a2 = -4
b1 = -2, b2 = -5
c1 = -3, c2 = -6
The result is:
L.H.S. = -2100735
R.H.S. = -2100376