inequality

2009-07-19 1:59 am
≥∑ i
Let

a(1), a(2), a(3), ..., a(n)

b(1), b(2), b(3), ..., b(n)

c(1), c(2), c(3), ..., c(n)

d(1), d(2), d(3), ..., d(n)

be 4 sets of real numbers. Show that

 n     n     n     n     n
{∑ [a(i)]^4} {∑ [b(i)]^4} {∑ [c(i)]^4} {∑ [d(i)]^4} ≥ {∑ a(i)b(i)c(i)d(i)}^4
 i=1    i=1    i=1    i=1     i=1


Hence deduce that
 n     n      n     n
{∑ [a(i)]³} {∑ [b(i)]³} {∑ [c(i)]³} ≥ {∑ a(i)b(i)c(i)}³
 i=1    i=1     i=1     i=1

回答 (3)

2009-07-19 4:07 am
✔ 最佳答案
By the Cauchy Schwarz ineq, we have:
[Σ(i = 1 → n) ai4][Σ(i = 1 → n) bi4] = [Σ(i = 1 → n) (ai2)2][Σ(i = 1 → n) (bi2)2]
>= [Σ(i = 1 → n) ai2bi2]2
and [Σ(i = 1 → n) ci4][Σ(i = 1 → n) di4] >= [Σ(i = 1 → n) ci2di2]2
Hence, applying CS-ineq, we have:
[Σ(i = 1 → n) ai4][Σ(i = 1 → n) bi4][Σ(i = 1 → n) ci4][Σ(i = 1 → n) di4] >= [Σ(i = 1 → n) ai2bi2]2[Σ(i = 1 → n) ci2di2]2
= {[Σ(i = 1 → n) (aibi)2][Σ(i = 1 → n) (cidi)2]}2
>= {[Σ(i = 1 → n) (aibicidi)]2}2
= [Σ(i = 1 → n) (aibicidi)]4
Then by setting ai4 = ui3, bi4 = vi3, ci4 = ti3 and ai4 = uiviti, we have:
[Σ(i = 1 → n) ui3][Σ(i = 1 → n) vi3][Σ(i = 1 → n) ti3][Σ(i = 1 → n) uiviti] >= [Σ(i = 1 → n) uiviti]4
[Σ(i = 1 → n) ui3][Σ(i = 1 → n) vi3][Σ(i = 1 → n) ti3 >= [Σ(i = 1 → n) uiviti]3
Therefore, by replacing the dummy variables ui3, vi3, and ti3 by ai3, bi3, and ci3 respectively, we have:
[Σ(i = 1 → n) ai3][Σ(i = 1 → n) bi3][Σ(i = 1 → n) ci3 >= [Σ(i = 1 → n) aibici]3

2009-07-18 20:35:48 補充:
In fact for the power 3 one, it is only true for the positive nos.
Taking:
a1 = -1, a2 = -4
b1 = -2, b2 = -5
c1 = -3, c2 = -6
The result is:
L.H.S. = -2100735
R.H.S. = -2100376
參考: Myself
2009-07-20 1:12 pm
答案正是http://hk.knowledge.yahoo.com/question/article?qid=6908032501912所示的內容。

想不到飛天魏國大將軍張遼的興趣題竟然變成了Pure Maths題!
2009-07-19 4:24 am
In the 2 solutions provided, x/v must be positive. But the question said a,b,c and d are real: so can be negative. So you guys have proved the case for a,b,c and d are positive real numbers?

2009-07-18 20:44:37 補充:
So indeed the question should be revised to mention positive real numbers only.


收錄日期: 2021-04-23 23:23:12
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090718000051KK01297

檢視 Wayback Machine 備份