Solve the equation ln5+ln(x-1)=0?
回答 (5)
✔ 最佳答案
ln[5(x-1)]=0
ln[5(x-1)]=ln1
5x-5=1
5x=6
x=1.2
ln(5) + ln(x - 1) = 0
ln[5(x - 1)] = 0
5(x - 1) = e^0
5x - 5 = 1
5x = 1 + 5
x = 6/5 (1.2)
ln5+ln(x-1)=0
ln (5(x-1)) =0
5(x-1)=e^0
5(x-1)=1
5x-5=1
5x=6
x=6/5
ln [ 5(x - 1) ] = 0
5( x - 1) = 1
x - 1 = 1 / 5
x = 6 / 5
In5 + ln(x - 1) = 0
ln(x - 1) = -ln5
ln(x - 1) = ln5‾¹
ln(x - 1) = ln(1 / 5)
x - 1 = 1 / 5
x = 1 / 5 + 1
x = 6 / 5
收錄日期: 2021-05-01 12:36:28
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090713063634AAr4efL
檢視 Wayback Machine 備份