A. Maths Derivatives

2009-07-10 2:00 am
Find the derivatives

h(x) = sin(tan(cos(x)))

Many thanks !!

回答 (2)

2009-07-10 2:20 am
✔ 最佳答案
Make good use of chain rule to tackle the problem...


h(x) = sin(tan(cosx))

h'(x) = d[sin(tan(cosx))]/dx

= d[sin(tan(cosx))]/d(tan(cosx)) X d(tan(cosx))/d(cosx) X d(cosx)/dx

= cos(tan(cosx)) X sec2(cosx) X (-sinx)

= -(sinx)cos(tan(cosx)) / cos2(cosx)


2009-07-09 18:20:27 補充:
Note that sec^2x = 1/cos^2x
參考: Physics king
2009-07-10 2:11 am
h(x) = sin(tan(cos(x)))
h'(x)=[cos(tan(cos(x)) ] [sec^2(cosx) ] [-sinx]


收錄日期: 2021-04-19 14:55:06
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090709000051KK01567

檢視 Wayback Machine 備份