COLLEGE ALGEBRA ~ 10 PTS?

2009-07-08 3:12 pm
Is x + 1 a factor of x^3 + 6x^2 – 2x – 7?

A. Yes
B. No

回答 (7)

2009-07-08 3:20 pm
✔ 最佳答案
= (x³ + 6x² - 2x - 7)/(x + 1)
= x² + 5x - 7

Answer: A. Yes it is!—there is no remainder when you divide it by x + 1.
2009-07-08 11:43 pm
..................x^2 + 5x - 7
.......________________
x + 1)x^3 + 6x^2 - 2x - 7
.........x^3 + x^2
------------------------------------
..................5x^2 - 2x
..................5x^2 + 5x
------------------------------------
..........................-7x - 7
..........................-7x - 7
------------------------------------

Therefore, x + 1 is a factor of x^3 + 6x^2 - 2x - 7.
(answer A)
2009-07-08 10:35 pm
x+1
let x+1 x=-1

plug in x=-1 to x^3+6x^2 – 2x – 7

f(-1)=x^3+6x^2 – 2x – 7
=(-1)^3+6(-1)^2-2(-1)-7
=-1+6+2-7
=0

therefore x^3 + 6x^2 – 2x – 7 is a factor of x+1..

A, Yes//
2009-07-08 10:21 pm
OK

The answer is A - yes

(x+1)(x^2 +5x-7)

Proof
(x+1)(x^2 +5x-7) =

x^3 +5x^2 -7x +x^2 +5x -7
= x^3 +6x^2 -2x -7

Hope that helps.
2009-07-08 10:18 pm
Using factor thereom:
f(-1) = -1 +6 +2 -7 = 0
so yes, (x+1) is a factor.
2009-07-08 10:17 pm
A. Yes

f(-1) = -1 + 6 + 2 - 7 = 0
(This means it is a factor)
2009-07-08 10:16 pm
Yes it is


收錄日期: 2021-05-01 12:38:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090708071240AAurFwd

檢視 Wayback Machine 備份