Factorize 3-12(a-b)2^?

2009-07-08 8:03 am

回答 (7)

2009-07-09 7:54 am
✔ 最佳答案
Hi,

Problem: 3 - 12(a - b)^2

*** take 3 Common **

= 3[1 - 4(a - b)^2]

= 3[(1)^2 - {2(a - b)}^2]

= 3[(1)^2 - (2a - 2b)^2]

= 3[(1 + 2a - 2b)(1 - 2a + 2b)] <==ANSWER

Since, a^2 - b^2 =(a +b)(a - b)

Hope i helped u :)
2009-07-08 8:16 am
Please check and see if you meant to write
3 - 12(a-b)^2

3 - 12(a-b)²
3(1 - 4(a-b)² )
3 ( 1 - 2²(a-b)² )
3 ( 1 - 2(a-b) ) ( 1 + 2(a-b) )
3 ( 1 - 2a + 2b ) ( 1 + 2a - 2b )
2009-07-08 8:51 am
a^2 - b^2 ≡ (a + b)(a - b)

3 - 12(a - b)^2
= 3[1 - 4(a - b)^2]
= 3{1^2 - [2(a - b)]^2}
= 3{1 + 2(a - b)}{1 - 2(a + b)}
= 3{1 + 2a - 2b}{1 - 2a - 2b}
= 3{2a - 2b + 1}{-2a - 2b + 1}
2009-07-08 8:29 am
3-12(a-b)^2
=3-12(a-b)(a-b)
=3-12(a^2-2ab+b^2)
=3-12a^2+24ab-12b^2
=3(1-4a^2+8ab-4b^2)
=3(1-4(a^2-2ab+b^2))
=3[1-4(a-b)^2]
=3[1+2(a-b)][1-2(a-b)]
=3(1+2a-2b)(1-2a+2b) answer//
2009-07-08 12:02 pm
hi,
3-12(a-b)2^=3[1-4(a-b)²] = 3[1-2²(a-b)²] = 3[1-{2(a-b)}²]
=3[1-2(a-b)] [1+2(a-b)] ------------>(x²-y²) = (x+y) (x-y)
= 3 (1-2a+2b) (1+2a-2b)







9
2009-07-08 8:15 am
To lose the brackets you need to use the formula a^2 + b^2 +2ab

3-12(a^2 +b^2 -2ab)

3- 12a^2 - 12b^2 + 24ab

3(1 - 4a^2 - 4b^2 + 8ab)
2009-07-08 8:12 am
3-2(a-b)2^

1(a-b)2^

1(a-b)2*2

(a-b)4

(1a-1b)4

4-1a-1b

2(ab) is answer


收錄日期: 2021-05-01 12:35:45
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090708000355AAXlNOH

檢視 Wayback Machine 備份