✔ 最佳答案
可用三角函數求之! Ans: 20度
2009-07-10 01:01:50 補充:
圖片參考:
http://s585.photobucket.com/albums/ss296/mathmanliu/degree20_3.gif
或參考
http://www.wretch.cc/album/show.php?i=mathmanliu&b=1&f=1740521772&p=142
註:省略度字
設∠CAO= x, ∠BAO=80-x
適當放大縮小使OC=sin10, OB=sin20 (對△OBC用sin定理)
△OAC由sin定理:
sin10 / sinx = OA/ sin30 => OA= (sin10)/(2sinx)
△OAB由 sin定理:
OA/sin40= OB/sin(80-x) => (sin10)/(2sinx sin40) = (sin20)/sin(80-x)
=>4sinx sin40*sin20= 2sin10*sin(80-x)
=> 2sinx*(cos20- cos60) = cos(70-x) - cos(90-x)
=> 2sinx * cos20 - sinx = cos(70-x) - sinx (消去 - sinx)
=> sin(x+20)+ sin(x-20)= sin(20+x) (note: cos(70-x)=sin(20+x) )
=> sin(x-20)=0
so, x= 20(度)
Ans: ∠CAO=20度