✔ 最佳答案
Please refer to Inclusion-ExclusionPrinciple in 參考資料
Let us use A(k) to represent the case when (k,k) does not appear in the n times rolls.
Use | mean OR
Counts of all possibilities = 36^n
Count of A(1)|A(2)|A(3)|A(4)|A(5)|A(6), i.e. at least one of the 6 is missing X=
Sum(one missing)
- Sum(2 missing at same time)
+ Sum(3 missing at the same time)
- Sum(4 missing at same time)
+ Sum(5 missing at the same time)
-Sum(all 6 missing together)
Sum of 1missing = (6C1)(35)^n
6C1: choose 1 from 6 possibilities (1,1),(2,2)...(6,6)
35 because 36 ways minus the one that is missing.
Similarly for 2, 3, 4, etc.
X=(6C1)35^n - (6C2)34^n + (6C3)33^n - (6C4)32^n + (6C5)31^n - (6C6)30^n
Count of all present = All combinations - Count for at least one missing
= 36^n - (6C1)35^n + (6C2)34^n - (6C3)33^n + (6C4)32^n - (6C5)31^n + (6C6)30^n
=Sum(k=0 to 6)(-1)^k(6Ck)(36-k)^n
Required probability = [Sum(k=0 to 6)(-1)^k(6Ck)(36-k)^n]/36^n
=Sum(k=0 to 6)(-1)^k(6Ck)(1-k/36)^n