math mc+LQ

2009-07-06 4:28 am
1.(logab+logb^2)/(loga^2b^3+logb^3)
a.2,
b.1/2,
c.1/3,
d.logab^3

2.cos^4(x)-sin^4(x)=
a.1
b.-1
c.(cos(x)-sin(x))(cos(x)+sin(x))\
d.(cos(x)-sin(x))^2

3.Let 101010(2)=P(10) and 1010000(2)=Q(10).How many prime
numbers are there between P and Q ?
a.6
b.7
c.8
d.9

4.A paper sector with central angle x is folded up to form a cone with
semi-vertical angle y .The relationship between x and y is
a.x/360=siny
b.x/360=1/siny
c.x/360=cosy
d.x/180=siny

5.2^m*4^n=16^n,find M:N

回答 (1)

2009-07-06 5:10 am
✔ 最佳答案
1.
The answer is b.

(logab + logb2)/(loga2b3 + logb3)
= log(abb2)/log(a2b3b3)
= log(ab3)/log(a2b6)
= log(ab3)/log(ab3)2
= log(ab3)/[2log(ab3)]
= 1/2

**********
2.
The answer is a.

cos4(x) - sin4(x)
= [cos2(x)]2 - [sin2(x)]2
= [cos2(x) + sin2(x)][cos2(x) - sin2(x)]
= 1[cos2(x) - sin2(x)]
= [cos(x) + sin(x)][cos(x) - sin(x)]

**********
3.
答案是 d。

1010102 = 1x(2)5 + 1x(2)3 + 1x(2) = 4210

10100002 = 1x(2)6 + 1x(2)4 = 8010

在 42 與 80 間的質數有:43, 47, 53, 59, 61, 67, 71. 73, 79
共有質數 9 個。

**********
4.
The answer is a.

Let R be the radius of the paper sector.
Arc length of the sector
= 2πR•(x/360)

Let r be the base radius of the cone.
Circumference of the base of the cone
= 2πr

Arc length of the sector = Circumference of the base of the cone
2πR•(x/360) = 2πr
r/R = x/360

Consider the cone.
The height, r and R form a right-angled triangle with hypotenuse R.
siny = r/R
Hence, siny = x/360

**********
5.
2m x 4n = 16n
2m x (22)n = (24)n
2m x 22n = 24n
2m = 24n / 22n
2m = 24n-2n
2m = 22n
m = 2n
m/n = 2/1

Hence, m : n = 2 : 1


收錄日期: 2021-04-30 12:58:34
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090705000051KK01576

檢視 Wayback Machine 備份