F.1 maths

2009-06-30 1:31 am
The n th term of sq. 3,9,18,30............. is what?
我計好耐都計唔到,
是不是出錯?

回答 (5)

2009-06-30 2:49 am
✔ 最佳答案
在下憑觀察所得 , 知道

T1 = 3(1) = 3
T2 = 3+3(2) = 9
T3 = 3+3(2)+3(3) = 18
T4 = 3+3(2)+3(3)+3(4) = 30

由此推斷通式是 : Tn = 3+3(2)+ ... + 3(n)

所以第 n term = 3 ( 1+ n ) n / 2

我個人相信沒有數值答案 , 不過如果有的話 , ma 煩你打出來 , 我再想想 , 但通式就如以上的樣子 , 無論多少項都可以代數字於此式求到答案。 ^^
2009-06-30 2:54 am
3,9,18,30
3=1*3
9=3*3
18=6*3
30=10*3
0+1=1
1+2=3
3+3=6
6+4=10
1,3,6,10 is三角形數
10+5=15
15*3=45
next is 45
3,9,18,30,45,63,82,108,135,165
特別之處:
9-3=6
18-9=9
30-18=12
45-30=15
63-45=18
82-63=21
6,9,12,15,18,21
6+3=9
9+3=12
12+3=15
15+3=18
18+3=21
... ...

第1數為1

1*3
(1+(1+1))*3
(1+(1+1)+(1+1+1))*3
(1+(1+1)+(1+1+1)+(1+1+1+1))*3
(1+(1+1)+(1+1+1)+(1+1+1+1)+(1+1+1+1+1)*3

1*3
(1+2)*3
(1+2+3)*3
(1+2+3+4)*3
(1+2+3+4+5)*3
if
某數為x
x*a
(x+x+1)*a
(x+x+x+1+2)*a
... ...

x*a
(x*2+1)*a
(x*3+3)*a
若問:
(x*a+m)*b
m=第(a-1)個三角形數
原理為x*b*a+c*a
c=第(b-1)個三角形數
eg.(3*6+a)*4
a=?
(3*6+a)*4
=>3*6*4+a*4
第6個三角形數是:1,3,6,10,15,21
a=21

參考: Hope I Can Help You^_^
2009-06-30 2:45 am
Sol
1   2   3   4   5.....n-1   n
3   9  18  30  45          3x
1   3   6  10  15           x
  2   3   4   5           n
x=1+2+3+4+...+n=n(n+1)/2
3x=3n(n+1)/2
2009-06-30 2:23 am
Let Fn=an^3 + bn^2 + cn + d
F1 = a+ b + c + d = 3 ...(1)
F2 = 8a + 4b + 2c + d = 9 ...(2)
F3 = 27a + 9b + 3c + d = 18 ... (3)
F4 = 64a + 16b + 4c + d = 30 ... (4)

(2)-(1) => 7a + 3b + c = 6 ... (5)
(3)-(2) => 19a + 5b + c = 9 ... (6)
(4)-(3) => 37a + 7b + c = 12 ...(7)

(6)-(5) => 12a + 2b = 3 ...(8)
(7)-(6) => 18a + 2b = 3 ...(9)

(9)-(8) => 6a = 0
So a=0, putting back to (8), (5) and (1) gives
b=3/2, c=3/2 and d=0

So Fn = 3/2n^2 + 3/2n = 3/2n(n+1)

Verify
F1= 3/2.1.2=3
F2 = 3/2.2.3=9
F3 = 3/2.3.4=18
F4 = 3/2.4.5=30
2009-06-30 1:36 am
條式係點架
無式係計不到的
參考: math book


收錄日期: 2021-04-23 23:18:56
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090629000051KK01435

檢視 Wayback Machine 備份