證明10ⁿ = 1000…0(n個0),其中n是任何非負整數
證明10n = 1000......0(n個0),其中n是任何非負整數。
回答 (7)
全部都差少少野,留意題目係「非負整數」,
所以就算用MI,都應該係由「n=0」開始做。
由於10有1個0,每x10=加1個0
所以n次方就有n個0
除induction:
By definition, a^n = a * a *a * ... * a (from 1 to n) , in case of n>4
10^n is ,therefore, equals to 10 * 10 *10 *... * 10(from 1 to n)
By multiplication, we have 10^n = 10......0(n zeros),
which finishs the proof
但呢題題目係咪有玄機??咁淺易的做法doraemonpaul會問咩??
when n=1, 10^1=10
Assume it is true for n= k , where k belongs to positive integer ,
i.e. 10^k = 10...0
Consider n = k+1,
10^(k+1)=10^k x 10 = 10...0 x 10 = 10....00
it is true for n = k+1
By Mathematical induction , it is true for all positive integer n.
用mathematical induction是非常簡單的...
收錄日期: 2021-04-19 14:52:15
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090628000051KK01164
檢視 Wayback Machine 備份