證明10ⁿ = 1000…0(n個0),其中n是任何非負整數

2009-06-29 12:39 am
證明10n = 1000......0(n個0),其中n是任何非負整數。

回答 (7)

2009-07-04 2:39 pm
全部都差少少野,留意題目係「非負整數」,
所以就算用MI,都應該係由「n=0」開始做。
2009-06-30 6:29 am
由於10有1個0,每x10=加1個0

所以n次方就有n個0
2009-06-29 8:27 am
除induction:

By definition, a^n = a * a *a * ... * a (from 1 to n) , in case of n>4
10^n is ,therefore, equals to 10 * 10 *10 *... * 10(from 1 to n)
By multiplication, we have 10^n = 10......0(n zeros),
which finishs the proof
2009-06-29 5:46 am
但呢題題目係咪有玄機??咁淺易的做法doraemonpaul會問咩??
2009-06-29 1:24 am
when n=1, 10^1=10

Assume it is true for n= k , where k belongs to positive integer ,

i.e. 10^k = 10...0

Consider n = k+1,

10^(k+1)=10^k x 10 = 10...0 x 10 = 10....00

it is true for n = k+1

By Mathematical induction , it is true for all positive integer n.



2009-06-29 12:48 am
用mathematical induction是非常簡單的...


收錄日期: 2021-04-19 14:52:15
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090628000051KK01164

檢視 Wayback Machine 備份