93數學甲問題@@

2009-06-29 5:31 am

回答 (2)

2009-06-29 6:23 am
✔ 最佳答案
2x^2+axy+2y^2=1必為圓(a=0)或橢圓( a^2 < 4)
(拋物線或雙曲線類均不可能落在圓x^2+y^2<=1 內 )
而 2x^2 + axy + 2y^2=1兩對稱軸為 x+y=0, x-y=0
即橢圓的兩個軸.
2x^2+axy+2y^2=1與 x+y=0聯立 (可得頂點)=> (4-a)x^2=1
(4-a>0) => x^2 + y^2 = 2/(4-a) <= 1 (落在圓內) => a <= 2

2x^2+axy+2y^2=1與 x-y=0聯立=> x^2+y^2= 2/(4+a) <= 1
=> a>= -2
故 a最小值= - 2


2009-06-29 00:25:33 補充:
更正:第一行
橢圓(a^2 < 4)改為 a^2 <16 => - 4<4 (so, 4-a, 4+a>0)
謝謝我思的提醒!
2009-06-29 8:15 am
大師:
橢圓的範圍應為 a^2 < 16 吧


收錄日期: 2021-05-04 00:46:38
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090628000010KK09138

檢視 Wayback Machine 備份