about sum and product of roots

2009-06-27 3:00 am
1.If the equations ax^2+bx+c=0 and px^2+qx+r=0 have one root in common, prove that (br-cq)(aq+bp)=(cp-ar)^2

2.If the equations x^2-ax+8=0 and x^2-5x+a=0 have one root in common, prove that a^3-4a^2-56a+264=0

回答 (3)

2009-06-27 3:38 am
2009-06-27 3:48 am
Let α be the common root

aα^2+bα+c=0

pα^2+qα+r =0

α=(ar-cp) / (bp-aq)



a [(ar - cp) / (bp - aq) ]^2 + b[(ar - cp) / (bp - aq )] +c=0

a(ar-cp)^2+b(ar-cp)(bp-aq)+c (bp-aq)^2=0

(ar-cp)^2= -(bp-aq) (br-cq) ... (*)

2 Sub a=1,b=-a,c=8,p=1,q=-5,r=a in (*)

(a-8)^2= -(-a+5) (-a^2+40)

a^3-4a^2-56a+264=0
2009-06-27 3:47 am


收錄日期: 2021-04-22 00:45:33
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090626000051KK01569

檢視 Wayback Machine 備份