✔ 最佳答案
Method 1: Undetermined coefficients
y" + 10y' + 25y = e-5x
Auxiliary equation: k2 + 10k + 25 = 0, k = -5
So, the complementary solution: yc = Ae-5x + Bxe-5x
Let the particular solution, yp = Cx2e-5x
yp' = C(2xe-5x - 5x2e-5x) = C(2x - 5x2)e-5x
yp" = C[-5(2x - 5x2)e-5x + (2 - 10x)e-5x] = C(25x2 - 20x + 2)e-5x
So, C(25x2 - 20x + 2)e-5x + 10C(2x - 5x2)e-5x + 25Cx2e-5x = e-5x
2Ce-5x = e-5x
C = 1/2
So, the general solution: y = yc + yp = Ae-5x + Bxe-5x + 1/2 x2e-5x
y' = -5Ae-5x + Be-5x - 5Bxe-5x + xe-5x - 5/2 x2e-5x
y(0) = 1, A = 1
y'(0) = 0, -5 + B = 0, B = 5
So, y = (1 + 5x + 1/2 x2)e-5x
Method 2: By Laplace Transformation
y" + 10y' + 25y = e-5x
L{y" + 10y' + 25y} = L{e-5x}
[s2Y(s) - sy(0) - y'(0)] + 10[sY(s) - y(0)] + 25Y(s) = 1/(s + 5)
(s2 + 10s + 25)Y(s) - (s + 10) = 1/(s + 5)
(s2 + 10s + 25)Y(s) = (s2 + 15s + 51) / (s + 5)
Y(s) = (s2 + 15s + 51) / (s + 5)(s2 + 10s + 25)
Y(s) = 1/(s + 5) + 5/(s + 5)2 + 1/(s + 5)3
y = L-1{Y(s)}
= L-1{1/(s + 5) + 5/(s + 5)2 + 1/(s + 5)3}
= L-1{1/(s + 5) + 5(1!)/(s + 5)2 + 1/2 X (2!)/(s + 5)3}
= e-5x + 5xe-5x + 1/2 x2e-5x
= (1 + 5x + 1/2 x2)e-5x
2009-06-26 14:01:34 補充:
這只是partial fraction來的
Y(s) = (s^2 + 15s + 51) / (s + 5)(s^2 + 10s + 25) = (s^2 + 15s + 51) / (s + 5)^3
設它為A/(s + 5) + B/(s + 5)^2 + C/(s + 5)^3解出A, B與C值就可以了。