關於組合數學的題目

2009-06-21 11:48 pm
有兩題:::

Verify the following identites


n
Σ C(n,i)^2 = C(2n,n) for all n屬於Z.
i=6


k
Σ C(n,i)*C(m,k-i) = C(m+n,k) where k<=min{m,n}
i=0

第一題左式是C的n取i 的平方。
小考的題目,但是有點不懂,希望會的大大可以指點一下,越詳細越好,謝謝。

回答 (2)

2009-06-22 12:21 am
✔ 最佳答案
1 Consider (1+x)^2n=(1+x)^n(1+x)^n
Expand both sides and the coefficient of x^n is
LHS: 2nCn
RHS: (nC0)(nCn)+(nC1)(nCn-1)+...+(nCn)(nC0)
=(nC0)(nC0)+(nC1)(nC1)+...+(nCn)(nCn)
=(nC0)^2+(nC1)^2+...+(nCn)^2
So
n
Σ C(n,i)^2 = C(2n,n) for all n屬於Z.
i=0

2 Using combinatorial argument.
Assume we have m+n objects and want to choose k objects, the combinations is just m+nCk
On the other hand, we can devide these m+n objects into two groups where one (Group A) has n objects and the other (Group B) has m objects. To choose k objects, we can choose 0 object from Group A and k objects from group B or 1 object from Group A and k-1 objects from group B or 2 objects from Group A and k-2 objects from group B, ect... The total combinations is (nC0)(mCk)+(nC1)(mCk-1)+...+(nCk)(mC0)
So
k
Σ C(n,i)*C(m,k-i) = C(m+n,k) where k<=min{m,n}
i=0
2009-06-22 12:08 am
1. n至少要大於等於6吧,怎麼會對所有整數都成立
C(2,6)就沒意義了呀!?


收錄日期: 2021-04-26 13:49:55
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090621000010KK06204

檢視 Wayback Machine 備份