三角比方程

2009-06-17 1:18 am
解下例方程,其中 0 <= x < 2丌

(sinx + cosx)² = 2sin[(丌/4) + x]sin[(丌/4) - x]

回答 (1)

2009-06-17 1:43 am
✔ 最佳答案
(sinx + cosx) = 2sin[(π/4) + x]sin[(π/4) - x]
sinx+cosx+2sinxcosx=2{-1/2[cos(π/2)-cos(2x)]}
1+2sinxcosx=-cos(π/2)+cos2x
1+2sinxcosx=1-2sinx
2sinxcosx+2sinx=0
2sinx(cosx+sinx)=0
sinx=0 or tanx=-1
x=0 , (3π)/4 , π , (7π)/4 or 2π

2009-06-16 17:46:36 補充:
(sinx + cosx)^2 = 2sin[(π/4) + x]sin[(π/4) - x]
sin^2x+cos^2x+2sinxcosx=2{-1/2[cos(π/2)-cos(2x)]}
1+2sinxcosx=-cos(π/2)+cos2x
1+2sinxcosx=1-2sin^2x
2sinxcosx+2sin^2x=0
2sinx(cosx+sinx)=0
sinx=0 or tanx=-1
x=0 , (3π)/4 , π , (7π)/4 or 2π


收錄日期: 2021-04-23 20:39:36
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090616000051KK01384

檢視 Wayback Machine 備份