✔ 最佳答案
a_0x^3+3a_1x^2+3a_2x+a_3=0
x^3+3(a_1/a_0)x^2+3(a_2/a_0)x+(a_3/a_0)=0
Using x=y+w, it can be shown that when w=-a_1/a_0, the formula will change to y^3+3H_1y+G_1=0
where 3H_1=3(-a_1^2/a_0+a_2) and G_1=2(a_1^3/a_0^2)-3(a_1a_2/a_0^2)+a_3
Now let z=a_0y, the equation becomes
z^3+3Hz+G=0 where
H=-a_1^2+a_0a_2,G=2a_1^3-3a_0a_1a_2+a_0^2a_3
(ii) p+q+r=0,pq+pr+qr=3H,pqr=-G
G^2=(pqr)^2
H^3=[(pq+pr+qr)/3]^3=(1/27)(pq+pr+qr)^3
-27(G^2+4H^3)=-27(pqr)^2-4(pq+pr+qr)^3...(1)
Consider this is a polynomial of p
Substitute p=q,r=-2q,then (1) becomes 0, similarly for p=r
So we have (p-q)(p-r) as the factor of (1)
Consider this is a polynomial of q and substitute q=p and q=r
we have zero. So (q-p) and (q-r) is a factor of (1)
Similar for the view of r, so (q-r)^2(r-p)^2(p-q)^2=-27(G^2+4H^3)
x=y+w=z/a_0+w. This means α=p/a_0-(a_1/a_0),β=q/a_0-(a_1/a_0) γ=r/a_0-(a_1/a_0)
And thus (q-r)^2(r-p)^2(p-q)^2=a_0^6(α- β)^2(β-γ)^2(γ-α)^2
a_0^6(α- β)^2(β-γ)^2(γ-α)^2=-27(G^2+4H^3)
D=(1/a_0^2)(-27)(G^2+4H^3) After expansion, we get the result.
(b)(1) D=0, -27(G^2+4H^3)=0=>(q-r)^2(r-p)^2(p-q)^2=0 So at least two roots are equal.
(2) D>0, (q-r)^2(r-p)^2(p-q)^2>0=>p,q,r are not equal
(3) D<0, (q-r)^2(r-p)^2(p-q)^2<0=>one real roots and two conjugate unreal roots.
(iii)(a) x=u+v,
x^3-15x
=(u+v)^3-15(u+v)
=u^3+v^3+3uv(u+v)-15(u+v)
=u^3+v^3+3(uv-5)(u+v)
(b) y=5/x=>x^3+(5/x)^3-126=0
x^6+125-126x^3=0
z^2-126z+125=0
(z-125)(z-1)=0
z=1 or 125
x=1 or 5
y=5 or 1
(c) x^3-15x-126=0
u^3+v^3+3(uv-5)(u+v)=126
u^3+v^3-126=0
3(uv-5)(u+v)=0
=> u=1,v=5
So x=6 is one root
Now x^3-15x-126=(x-6)(x^2+6x+21) and we can find the other two roots
So
2009-06-14 20:56:38 補充:
(b) Using the result that if a complex number is a root of the polynomial, then its conjugate should also be a root