✔ 最佳答案
Note:度字省略
Q1:
原式= sin20*cos20*cos40*cos80/sin(20)
= (1/2) sin40*cos40*cos80/sin20
=(1/2)^2 sin80*cos80/sin20
= 1/8 sin160/sin20 = 1/8
Q2:
原式= sin(2π/5)+sin(4π/5)- sin(4π/5)- sin(2π/5)=0
Note: sinx= - sin(2π-x)
Q3:
原式=(cos4+i sin4)^10*(cos5+isin5)^6*(cos2-i sin2)^10
= (cos40+i sin40)*(cos30+i sin30)*[cos(-20)+i sin(-20)]
= cos(50)+i sin(50)
Q4: 設 z'表z之共軛複數
設 z= sin(π/18)+i cos(π/18)
=> z'= sin(π/18)- i cos(π/18), 且 z*z'= 1
原式= [ (1-z')/(1-z)]^9
=[(z*z'- z')/(1-z)]^9
=[z'(z-1)/(1-z)]^9
=- (z')^9
= - [ sin(π/18)- i cos(π/18)]^9
= - ( cos80- i sin80)^9 (度字省略)
= - ( cos720- i sin720)
= - 1
2009-06-14 23:37:59 補充:
Q3:少一個除號, 更正如下:
原式=(cos4+i sin4)^10*(cos5+isin5)^6 / (cos2-i sin2)^10
= (cos40+i sin40)*(cos30+i sin30) /[cos(-20)+i sin(-20)]
= cos(90)+i sin(90) = i