✔ 最佳答案
This is very easy... Using the method of undetermining coefficients to tackle it.
y" + y = sin2t
Auxiliary equation: k2 + 1 = 0
k = +- i
Therefore, the complementary solution, yc = Asint + Bcost, where A and B are constants.
Now, let the particular solution,
yp = Csin2t + Dcos2t
yp' = 2(Ccos2t - Dsin2t)
yp" = -4(Csin2t + Dcost2t)
We have: -4(Csin2t + Dcos2t) + Csin2t + Dcos2t = sin2t
-3Csin2t - 3Dcos2t = sin2t
Comparing coefficients, C = -1/3, D = 0
So, the general solution:
y = yc + yp
= Asint + Bcost - 1/3 sin2t
y' = Acost - Bsint - 2/3 cos2t
y(0) = 2 and y'(0) = 1
So, B = 2, A - 2/3 = 1, A = 5/3
We have:
y = (5sint) / 3 + 2cost - (sin2t) / 3
2009-06-13 16:55:14 補充:
呢條喺Applied maths入面係執分題...
2009-06-13 17:07:23 補充:
這題用拉普拉斯變換方式做會很麻煩... 雖然我都做到同一個答案。
都係我答嘅方法最快...