極限值與微分

2009-06-14 5:01 am
lim [sin(2k+2θ)cosθ- sin2θcos(k+θ)]csc k =(請化簡到無 k)
(k→0)

要用微分嗎?
更新1:

= cos(2θ)cosθ+ cos(2θ-θ) = 0.5 [ cosθ- cos(3θ)] + cosθ = [3cosθ- cos(3θ)]/2 這裡怎麼感覺怪怪的? 當θ代 0 上式=2...cos(2θ)cosθ+ cos(2θ-θ) 最後結論卻是1...[3cosθ- cos(3θ)]/2??

更新2:

歐...原來是積化和差算錯了...我看到了

回答 (4)

2009-06-14 8:05 am
✔ 最佳答案
設f(x)= sin(2x+2θ)cosθ- sin(2θ)cos(x+θ), 則
f'(x)= 2cos(2x+2θ)cosθ+ sin(2θ)sin(x+θ)
f'(0)= 2cos(2θ)cosθ+ sin(2θ)sinθ
原式= lim(k->0) [f(k)-f(0)]/k * (k/sink)
= f'(0) * 1
= 2cos(2θ)cosθ+sin(2θ)sinθ
= cos(2θ)cosθ+ cos(2θ-θ)
= 0.5 [ cosθ- cos(3θ)] + cosθ
= [3cosθ- cos(3θ)]/2


2009-06-14 00:53:18 補充:
吔! STEVIE-G兄: 這樣虧一下,您也高興啊!?

2009-06-14 22:25:15 補充:
sorry!更正:
cos(2θ)cosθ+cos(2θ-θ)
=0.5[cosθ+cos(3θ)]+cosθ
=[3cosθ+cos(3θ)]/2
2009-06-14 10:53 am
若用 L' Hospital rule 也挻快捷
2009-06-14 8:13 am
高手真係高手...菩堤大師你永遠都係我的偶像!
2009-06-14 6:12 am
用餘角公式還是和解公式展開再帶值


收錄日期: 2021-04-22 00:42:36
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090613000010KK09669

檢視 Wayback Machine 備份