關於我想問中三幾何問題

2009-06-12 10:41 pm
http://www.lcp.edu.hk/club/maths/F3Math/F3triangle.doc
以上網址中,每一題怎樣證明題目中要求的東西,
同埋我知道隻角係幾多角度,邊隻角等同邊隻角都好,我係唔識解釋個三角形係等於果隻角果個角度,請詳細解釋內裡的題目,萬分感謝!!!

我要以上網址第4-20題的答案和解釋

回答 (3)

2009-06-21 4:50 am
✔ 最佳答案
4a)要 prove △ABC和△ADC 為全等三角形?????
在△ABC和△ADC中,
AC = AC (公共邊)
AB = AD (已知)
∠ABC = ∠ADC = 90* (直線上的鄰角)
∴△ABC 全等於 △ADC (R.H.S.)
b)If BD = 12,then CD = BC = 12 / 2 = 6 (全等△的對應邊)
c)AC = √(102 - 62) = 8 (畢氏定理)

5a)在△ABC 和△FDE中,
∠ABC = ∠FDE = 30* (已知)
∠DFE = 180* - 30* - 70* = 80* (△的內角和)
=> ∠BAC = ∠DFE = 80* (已證)
∠ACB = 180* - 80* - 30* = 70* (△的內角和)
=> ∠ACB = ∠FED = 70* (已證)
∴△ABC 相似於 △FDE (A.A.A.)
b)AC / FE = BA / DF = BC / DE (相似△的對應邊)
AC / 18 = 10 / 20===> AC = 9
6 / DF = 10 / 20===> DF = 12

6a)在△DCE 和△DAB中,
∠CDE = ∠ADB (公共角)
∠BAD = ∠ECD = 90* (已知)
∴△DCE相似於 △DAB (A.A.A.)
b)DE / DB = DC / DA (相似△的對應邊)
DE = √(82 + 62) = 10 (畢氏定理)
10 / (8 + BC) = 8 / (10 + 2) ===> BC = 7

7)考慮星形中間的五邊形,以及三角形的外角
Note that 多邊形外角和 = 360*
a + d + b + e + a + c + b + d + c + e = 360*
a + b + c + d + e = 360* / 2 = 180*

8a) d = 180* - 80* - 50* = 50* (△的內角和)
b) b = 180* - 80* = 100* (直線上的鄰角)
同理,c = 130* 及 a = 130*
三角形的外角和 = a + b + c = 360*

9)設各三角形的交點為O,則
∠AOB = ∠BOC = ∠COD = ∠DOE = ∠EOF = ∠FOA = 360* / 6 = 60*
∠OAB + ∠OBA = 180* - 60* = 120*
故正六邊形內角和 = 120* X 6 = 720*

10a)∠ABC = 180* - 50* - 65* = 65* = ∠ACB
即△ABC是等腰三角形
b)∠DAC = ∠ACB = 65* (內錯角,AD//BC)
∠DCA = ∠BAC = 50* (內錯角,AB//CD)
AC = AC (公共邊)
即△ABC全等於△CDA (A.S.A.)
c)∠CDA = 65* (全等△的對應邊)

11a)∠ABC = ∠DFE (已知)
AB / DF = 12 / 6 = 2
BC / FE = 14 / 7 = 2
故△ABC相似於△DFE (兩邊成比例,且夾角相等)
b)AC / DE = AB / DF (相似△的對應邊) ==>AC = 10

12a)∠ABC = ∠FED (已知)
AB = FE = 6 (畢氏定理求得)
AC = FD (已知)
故△ABC全等於△DFE (R.H.S.)
b)BC = 8 及 EF = 6 (全等△的對應邊)

13a)∠ACE = 180* - 100* - 30* = 50*
b)∠CBE = 180* - 30* = 150*
∠FCA = 180* - 50* = 130*
∠DAB = 180* - 100* = 80*
c)△ABC外角和 = 80* + 130* + 150* = 360*

14a)∠BEC = 60* 及 ∠ABE = 90* - 60* = 30*
b)∠BEA = (180* - 30*) / 2 = 75*
c)△CDE是等腰三角形,∠AED = 360* - 60* - 75* - 75* = 150*

15a)∠BAD = ∠CAD 及 ∠ABD = ∠ACD (已知)
AD = AD (公共邊)
△ABD全等於△ACD (A.A.S.)
b)∠BDC = 90*
c)BD = CD (全等△的對應邊) 即△BDC是等腰三角形

16a)∠ABE = 60*
b)BE = BC = AB,即△ABC是等腰三角形
c)∠ABC = 90* + 60* = 150*==>∠BAC= (180* - 150*) / 2=15*
∠ACD = 90* - 15* = 75*

2009-06-20 20:51:11 補充:
17a) (10 + BD)(5) / 2 = 70=> (10 + 10 + CD)(5) / 2 = 70 => CD = 8

b)CD = CE = DE = 8 ==> ∠ECD是等邊三角形

2009-06-20 20:51:44 補充:
18a)AB = √(132 - 122) = 5 及 AD = 12 (畢氏定理)
b)AC = AC (公共邊) 且 AB = CD 及 BC = AD (已知)
即△ABC全等於△CDA (SSS)

19)∠ABD = ∠CDB 及 ∠ADB = CBD (內錯角) 及BD=BD(公共邊)
即△ABD全等於△CDB (ASA)

2009-06-20 20:51:48 補充:
20a)∠ABC = ∠CDE (已知) 及BC / DE = AB / CD = 2
故△ABC相似於△DFE (兩邊成比例,且夾角相等)
b)AC / CE = BC / DE(相似△的對應邊) ==> AC = 14 ==> AE = 7
c)∠CED = ∠ACB = 50* ==> ∠AED = 180* - 50* = 130*

2009-06-20 20:52:35 補充:
這是次方 ===> 18a)AB = √(13^2 - 12^2) = 5 及 AD = 12 (畢氏定理)

2009-06-21 13:45:04 補充:
直角acb=90度,如果角acb加角abc=90度+90度,咁角bac未得0度?
都畫唔到3角形出黎????!!!!!

4c)AC = √(10^2 - 6^2) = 8 (畢氏定理)
這是次方黎.......
2009-06-21 7:04 am
問題4a中
∠ABC = ∠ADC = 90* (直線上的鄰角)

直角acb=90度,如果角acb加角abc=90度+90度,咁角bac未得0度?(根據三角形內角和等於180度)

另外我想知4a點樣得出102-62再等於8?
2009-06-13 3:00 am
第4題a part有冇錯?!


收錄日期: 2021-04-23 20:44:30
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090612000051KK00854

檢視 Wayback Machine 備份