[ 數學 ]二項式nCr
1 按x的升冪序展開
(1+ x )^n (4 + 2x ^2 + ax^3 ) = 4+ 24x + 62x^2 + 91x^3 +其他較高次冪的項 , 求a 和 n的值
2 α和 β為方程ax^2 + 7x + c = 0 的兩根 根之和 = -7/2 , 根之積= -2
求a和c 的值
回答 (2)
(1+ x )^n (4 + 2x ^2 + ax^3 ) = 4+ 24x + 62x^2 + 91x^3 +...
(1+x)^n (4+2x^2+ax^3)
=(1+ nC1 x+ nC2 x^2 + nC3 x^3 + .... )(4+2x^2+ax^3)
=[1+nx+n(n-1)/2 x^2 + n(n-1)(n-2) / 6 x^3 + ...)(4+2x^2+ax^3)
=4 + 4nx + 4n(n-1)/2 x^2 + 4n(n-1)(n-2)/6 x^3 + 2x^2 + 2nx^3 + ax^3 +...
=4 + 4nx + 4n(n-1)/2 x^2 + 2x^2 + 4n(n-1)(n-2)/6 x^3 + 2nx^3 + ax^3 +....
=4 + 4nx + [4n(n-1)/2 + 2]x^2 + [4n(n-1)(n-2)/6 + 2n + a] x^3
∴4n = 24
n = 6
4n(n-1)(n-2)/6 + 2n + a = 91
4x6(5)(4)/6 + 2(6) + a = 91
92 + a = 91
a = -1
2. α + β = -7/a = -7/2
a = 2
αβ = c/a = -2
c/2 = -2
c = -4
參考: me
收錄日期: 2021-04-13 16:39:38
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090607000051KK02188
檢視 Wayback Machine 備份